
DRAFT
C

A

(Cforall) User Manual1

Version 1.02

“describe not prescribe”3

C

A

Team (past and present)
Andrew Beach, Richard Bilson, Michael Brooks, Peter A. Buhr, Thierry Delisle,
Glen Ditchfield, Rodolfo G. Esteves, Jiada Liang, Aaron Moss, Colby Parsons

Rob Schluntz, Fangren Yu, Mubeen Zulfiqar

4

April 14, 20255

© 2016, 2018, 2021, 2024 C

A

Project6

7

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this8

license, visit http://creativecommons.org/licenses/by/4.0.9

http://creativecommons.org/licenses/by/4.0


Contents1

1 Introduction 12

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Why fix C? 14

3 History 25

4 Interoperability 26

5 C

A

Compilation 37

6 Backquote Identifiers 58

7 Constant Underscores 59

8 Exponentiation Operator 610

9 Control Structures 611

9.1 if / while Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

9.2 case Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

9.3 switch Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

9.4 Non-terminating and Labelled fallthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015

9.5 Loop Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116

9.6 Labelled continue / break Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217

9.7 Extended else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1518

9.8 with Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519

10 Exception Handling 1720

10.1 Non-local Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1821

10.2 Exception Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1822

11 Alternative Declarations 1923

12 Pointer / Reference 2024

12.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2325

12.2 Address-of Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2426

12.3 Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2527

13 string Type 2528

13.1 Implicit String Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2629

13.2 Size (length) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2630

13.3 Comparison Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2731

13.4 Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2732

13.5 Repetition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2733

13.6 Substring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2734

13.7 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2835

13.8 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2936

13.9 Returning N+1 on Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3037

13.10C Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3038

13.11Input/Output Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3139

14 Enumeration 3140

14.1 Enum type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3141

14.2 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3242

ii



CONTENTS iii

15 Routine Definition 331

15.1 Named Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

15.2 Routine Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

15.3 Postfix Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

16 Routine Pointers 355

17 Default and Named Parameter 366

17.1 Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

17.2 Named (or Keyword) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

17.3 Mixed Default/Named . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

18 Unnamed Structure Fields 3810

19 Nesting 3811

19.1 Type Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3812

19.2 Routine Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3813

20 Tuple 3914

20.1 Multiple-Return-Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4015

20.2 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4116

20.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4117

20.4 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4218

20.5 Flattening and Structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4219

20.6 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4320

20.7 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4421

20.8 Member-Access Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4422

20.9 Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4523

20.10Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4824

20.10.1 Assertion Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4825

21 Tuples 4926

21.1 Tuple Coercions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5027

21.2 Mass Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5128

21.3 Multiple Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5129

21.4 Cascade Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5230

22 Stream I/O Library 5231

22.1 Basic I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5232

22.1.1 Stream Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5333

22.1.2 Stream Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5334

22.1.3 Stream Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5435

22.2 Implicit Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5436

22.3 Separation Manipulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5637

22.4 Newline Manipulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5738

22.5 Output Manipulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5839

22.6 Input Manipulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6040

22.7 Concurrent Stream Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6241

22.8 Locale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6342

23 String Stream 6343

24 Structures 6344

25 Constructors and Destructors 6445



iv CONTENTS

26 Overloading 651

26.1 Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

26.2 Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

26.3 Function Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

26.4 Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

27 Auto Type-Inferencing 696

28 Concurrency 697

28.1 Coroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

28.2 Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

28.3 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7010

29 Language Comparisons 7011

29.1 C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7012

29.2 Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7113

29.3 Rust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7214

29.4 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7315

A Syntax Ambiguities 7316

B C Incompatibles 7317

C C

A

Keywords 7618

D Standard Headers 7619

E Standard Library 7620

E.1 Dynamic Storage-Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7721

E.1.1 C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7722

E.1.2 C

A

Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7723

E.2 Memory Set and Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8124

E.3 String to Value Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8125

E.4 Search / Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8226

E.5 Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8227

E.6 C Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8328

E.7 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8329

F Math Library 8330

F.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8331

F.2 Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8432

F.3 Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8433

F.4 Trigonometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8534

F.5 Hyperbolic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8635

F.6 Error / Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8736

F.7 Nearest Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8737

F.8 Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8938

G Time Keeping 8939

G.1 Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8940

G.2 timeval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9141

G.3 timespec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9142

G.4 itimerval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9143

G.5 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9144



CONTENTS v

H Clock 921

H.1 C time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922

H.2 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923

I Pseudo Random Number Generator 934

J Multi-precision Integers 955

K Rational Numbers 986

Index 1017



1 Introduction1

C

A1 is a modern general-purpose concurrent programming-language, designed as an evolutionary step forward for2

the C programming language. The syntax of C

A

builds from C and should look immediately familiar to C/C++ pro-3

grammers. C

A

adds many modern features that directly lead to increased safety and productivity, while maintaining4

interoperability with existing C programs and achieving similar performance. Like C, C

A

is a statically typed, proce-5

dural (non-object-oriented) language with a low-overhead runtime, meaning there is no global garbage-collection, but6

regional garbage-collection is possible. The primary new features include polymorphic routines and types, exceptions,7

concurrency, and modules.8

One of the main design philosophies of C

A

is to “describe not prescribe”, which means C

A

tries to provide a9

pathway from low-level C programming to high-level C

A

programming, but it does not force programmers to “do10

the right thing”. Programmers can cautiously add C

A

extensions to their C programs in any order and at any time to11

incrementally move towards safer, higher-level programming. A programmer is always free to reach back to C from12

C

A

, for any reason, and in many cases, new C

A

features can be locally switched back to their C counterpart. There is13

no notion or requirement for rewriting a legacy C program to C

A

; instead, a programmer evolves a legacy program into14

C

A

by incrementally incorporating C

A

features. As well, new programs can be written in C

A

using a combination of C15

and C

A

features. In many ways, C

A

is to C as Scala [29] is to Java, providing a vehicle for new typing and control-flow16

capabilities on top of a highly popular programming language allowing immediate dissemination.17

C++ [30] had a similar goal 30 years ago, allowing object-oriented programming to be incrementally added to C.18

However, C++ currently has the disadvantages of a strong object-oriented bias, multiple legacy design-choices that are19

difficult to update, and active divergence of the language model from C, requiring significant effort and training to20

incrementally add C++ to a C code-base. In contrast, C

A

has 30 years of hindsight and a clean starting point.21

Like C++, there may be both old and new ways to achieve the same effect. For example, the following programs22

compare the C, C

A

, and C++ I/O mechanisms, where the programs output the same result.23

C C

A

C++

#include <stdio.h>

int main( void ) {

int x = 0, y = 1, z = 2;

printf( "%d %d %d\n", x, y, z );

}

#include <fstream.hfa>

int main( void ) {

int x = 0, y = 1, z = 2;

sout | x | y | z;

}

#include <iostream>

using namespace std;

int main() {

int x = 0, y = 1, z = 2;

cout << x << ' ' << y << ' ' << z << endl;

}

24

While C

A

I/O (see Section 22, p. 52) looks similar to C++, there are important differences, such as automatic spacing25

between variables and an implicit newline at the end of the expression list, similar to Python [26]. In general, C

A

26

programs are 10% to 30% shorter than their equivalent C/C++ counterparts.27

1.1 Background28

This document is a programmer reference-manual for the C

A

programming language. The manual covers the core29

features of the language and runtime-system, with simple examples illustrating syntax and semantics of features. The30

manual does not teach programming, i.e., how to combine the new constructs to build complex programs. The reader31

must have an intermediate knowledge of control flow, data structures, and concurrency issues to understand the ideas32

presented, as well as some experience programming in C/C++. Implementers should refer to the C

A

Programming33

Language Specification for details about the language syntax and semantics. Changes to the syntax and additional34

features are expected to be included in later revisions.35

2 Why fix C?36

The C programming language is a foundational technology for modern computing with billions of lines of code imple-37

menting everything from hobby projects to commercial operating-systems. This installation base and the programmers38

producing it represent a massive software-engineering investment spanning decades and likely to continue for decades39

more. Even with all its problems, C continues to be popular because it allows writing software at virtually any level40

in a computer system without restriction. For system programming, where direct access to hardware, storage manage-41

ment, and real-time issues are a requirement, C is the only language of choice. The TIOBE index [32] for February42

1Pronounced “C-for-all”, and written C

A

, CFA, or Cforall.

1



2 4 Interoperability

2023 ranks the top six most popular programming languages as C 17.4%, Java 12%, Python 12%, C++ 7.6%, C♯ 4%,1

Visual Basic 3.8% = 56.8%, where the next 50 languages are less than 2% each, with a long tail. The top 4 rankings2

over the past 35 years are:3

2023 2018 2013 2008 2003 1998 1993 1988
Python 1 4 8 7 12 25 18 -

C 2 2 1 2 2 1 1 1

C++ 3 3 4 4 3 2 2 4
Java 4 1 2 1 1 18 - -

4

Hence, C is still an extremely important programming language, with double the usage of C++; in many cases, C++ is5

often used solely as a better C. Love it or hate it, C has been an important and influential part of computer science6

for 40 years and its appeal is not diminishing. Nevertheless, C has many problems and omissions that make it an7

unacceptable programming language for modern needs.8

As stated, the goal of the C

A

project is to engineer modern language-features into C in an evolutionary rather than9

revolutionary way. C++ [22, 12] is an example of a similar project; however, it largely extended the C language, and10

did not address many of C’s existing problems.2 Fortran [14], Cobol [6], and Ada [1] are examples of programming11

languages that took an evolutionary approach, where modern language-features (e.g., objects, concurrency) are added12

and problems fixed within the framework of the existing language. Java [18], Go [19], Rust [28] and D [3] are13

examples of the revolutionary approach for modernizing C/C++, resulting in a new language rather than an extension14

of the descendent. These languages have different syntax and semantics from C, do not interoperate directly with C,15

and are not systems languages because of restrictive memory-management or garbage collection. As a result, there16

is a significant learning curve to move to these languages, and C legacy-code must be rewritten. These costs can be17

prohibitive for many companies with a large software-base in C/C++, and a significant number of programmers require18

retraining in the new programming language.19

The result of this project is a language that is largely backwards compatible with C11 [21], but fixes many of the20

well known C problems while adding modern language-features. To achieve these goals required a significant engi-21

neering exercise, i.e., “thinking inside the C box”. Considering the large body of existing C code and programmers,22

there is significant impetus to ensure C is transformed into a modern language. While C11 made a few simple exten-23

sions to the language, nothing was added to address existing problems in the language or to augment the language24

with modern language-features. While some may argue that modern language-features may make C complex and25

inefficient, it is clear a language without modern capabilities is insufficient for the advanced programming problems26

existing today.27

3 History28

The C

A

project started with Dave Till’s K-W C [5, 31], which extended C with new declaration syntax, multiple return29

values from routines, and advanced assignment capabilities using the notion of tuples (see [33] for similar work in30

C++). The first C

A

implementation of these extensions was by Rodolfo Esteves [13].31

The signature feature of C

A

is overloadable parametric-polymorphic functions [7, 8, 11] with functions generalized32

using a forall clause (giving the language its name):33

forall( T ) T identity( T val ) { return val; }34

int forty_two = identity( 42 ); // T is bound to int, forty_two == 4235

C

A

’s polymorphism was originally formalized by Glen Ditchfield [9], and first implemented by Richard Bilson [2].36

However, at that time, there was little interest in extending C, so work did not continue. As the saying goes, “What37

goes around, comes around.”, and there is now renewed interest in the C programming language because of the legacy38

code-base, so the C

A

project was restarted in 2015.39

4 Interoperability40

C

A

is designed to integrate directly with existing C programs and libraries. The most important feature of interoper-41

ability is using the same calling conventions, so there is no complex interface or overhead to call existing C routines.42

This feature allows C

A

programmers to take advantage of the existing panoply of C libraries to access thousands of43

2Two important existing problems addressed were changing the type of character literals from int to char and enumerator from int to the type of its
enumerators.



5 C

A

Compilation 3

software features. Language developers often state that adequate library support takes more work than designing and1

implementing the language itself. Fortunately, C

A

, like C++, starts with immediate access to all exiting C libraries, and2

in many cases, can easily wrap library routines with simpler and safer interfaces, at zero or very low cost. Hence, C

A

3

begins by leveraging the large repository of C libraries, and than allows programmers to incrementally augment their4

C programs with modern backward-compatible features.5

However, it is necessary to differentiate between C and C

A

code because of name overloading, as for C++. For6

example, the C math-library provides the following routines for computing the absolute value of the basic types: abs,7

labs, llabs, fabs, fabsf, fabsl, cabsf, cabs, and cabsl. Whereas, C

A

wraps these routines into one overloaded name abs:8

unsigned char abs( signed char ); // no C equivalent9

extern "C" { int abs( int ); } // C abs10

unsigned long int abs( long int ); // C labs11

unsigned long long int abs( long long int ); // C llabs12

float abs( float ); // C fabsf13

double abs( double ); // C fabs14

long double abs( long double ); // C fabsl15

float _Complex abs( float _Complex ); // C cabsf16

double _Complex abs( double _Complex ); // C cabs17

long double _Complex abs( long double _Complex ); // C cabsl18

The problem is a name clash between the C name abs and the C

A

names abs, resulting in two name linkages:19

extern "C" and extern "Cforall" (default). Overloaded names must use name mangling to create unique names20

that are different from unmangled C names. Hence, there is the same need as in C++ to know if a name is a C or C

A

21

name, so it can be correctly formed. The only way around this problem is C’s approach of creating unique names for22

each pairing of operation and type.23

This example illustrates a core idea in C

A

: the power of a name. The name “abs” evokes the notion of absolute24

value and many mathematical types provide the notion of absolute value. Hence, knowing the name abs is sufficient25

to apply it to any applicable type. The time savings and safety of using one name uniformly versus N unique names26

cannot be underestimated.27

5 C
A

Compilation28

C

A

is a transpiler, meaning it reads in a programming language (C

A

) as input and generates another programming29

language (C) as output, whereas a compiler reads in a programming language and generates assembler/machine code.30

Hence, C

A

is like the C preprocessor modifying a program and sending it on to another step for further transforma-31

tion. The order of transformation is C preprocessor, C

A

, and finally GNU C compiler, which also has a number of32

transformation steps, such as assembler and linker.33

The command cfa is used to compile a C

A

program and is based on the GNU gcc command, e.g.:34

cfa [ gcc/C

A

-options ] [ C/C

A

source-files ] [ assembler/loader files ]35

There is no ordering among options (flags) and files, unless an option has an argument, which must appear immediately36

after the option possibly with or without a space separating option and argument.37

C

A

has the following gcc flags turned on:38

-std=gnu11 The 2011 C standard plus GNU extensions.39

C

A

has the following new options:40

-CFA Only the C preprocessor (flag -E) and the C

A

translator steps are performed and the transformed program41

is written to standard output, which makes it possible to examine the code generated by the C

A

translator. The42

generated code starts with the standard C

A

prelude.43

-XCFA Pass next flag as-is to the cfa-cpp translator (see details below).44

-debug The program is linked with the debugging version of the runtime system. The debug version performs45

runtime checks to aid the debugging phase of a C

A

program, but can substantially slow program execution. The46

runtime checks should only be removed after a program is completely debugged. This option is the default.47

-nodebug The program is linked with the non-debugging version of the runtime system, so the execution of the48

program is faster. However, no runtime checks or asserts are performed so errors usually result in abnormal49

program behaviour or termination.50

-help Information about the set of C

A

compilation flags is printed.51



4 5 C

A

Compilation

-nohelp Information about the set of C

A

compilation flags is not printed. This option is the default.1

-quiet The C

A

compilation message is not printed at the beginning of a compilation.2

-noquiet The C

A

compilation message is printed at the beginning of a compilation. This option is the default.3

The following preprocessor variables are available:4

_ _CFA_MAJOR_ _ is available during preprocessing and its value is the major version number of C

A

.35

_ _CFA_MINOR_ _ is available during preprocessing and its value is the minor version number of C

A

.6

_ _CFA_PATCH_ _ is available during preprocessing and its value is the patch level number of C

A

.7

_ _CFA_ _, _ _CFORALL_ _ , and _ _cforall are always available during preprocessing and have no value.8

These preprocessor variables allow conditional compilation of programs that must work differently in these situations.9

For example, to toggle between C and C

A

extensions, use the following:10

#ifndef _ _CFORALL_ _11

#include <stdio.h> // C header file12

#else13

#include <fstream.hfa> // C

A

header file14

#endif15

which conditionally includes the correct header file, if the program is compiled using gcc or cfa.16

The C

A

transpiler has multiple internal steps. The following flags control how the C

A

transpiler works, the stages17

run, and printing within a stage. The majority of these flags are used by C

A

developers, but some are occasionally18

useful to programmers. Each option must be escaped with -XCFA to direct it to the C

A

compilation step, similar to the19

-Xlinker flag for the linker, e.g.:20

cfa test.cfa -CFA -XCFA -p # print translated code without printing the standard prelude21

cfa test.cfa -XCFA -P -XCFA parse -XCFA -n # show program parse without prelude22

Alternatively, multiple flags can be specified separated with commas and without spaces.23

cfa §test§.cfa -XCFA,-Pparse,-n # show program parse without prelude24

-c, --colors diagnostic color: never, always, auto25

-g, --gdb wait for gdb to attach26

-h, --help print transpiler help message27

-i, --invariant invariant checking during AST passes28

-l, --libcfa generate libcfa.c29

-L, --linemarks generate line marks30

-m, --no-main do not replace main31

-N, --no-linemarks do not generate line marks32

-n, --no-prelude do not read prelude33

-p, --prototypes do not generate prelude prototypes⇒ prelude not printed34

-d, --deterministic-out only print deterministic output35

-P, --print one of:36

ascodegen print AST as codegen rather than AST37

asterr print AST on error38

declstats print code property statistics39

parse print yacc (parsing) debug information40

pretty prettyprint for ascodegen flag41

rproto resolver-proto instance42

rsteps print resolver steps43

ast print AST after parsing44

excpdecl print AST after translating exception decls45

symevt print AST after symbol table events46

expralt print AST after expressions alternatives47

valdecl print AST after declaration validation pass48

bresolver print AST before resolver step49

3The C preprocessor allows only integer values in a preprocessor variable so a value like “1.0.0 ” is not allowed. Hence, the need to have three
variables for the major, minor and patch version number.



6 Backquote Identifiers 5

// include file uses the CFA keyword "with".

#if ! defined( with ) // nesting ?

#define with
`̀

with // make keyword an identifier

#define _ _CFA_BFD_H_ _

#endif

#include_next <bfdlink.h> // must have internal check for multiple expansion

#if defined( with ) && defined( _ _CFA_BFD_H_ _ ) // reset only if set

#undef with

#undef _ _CFA_BFD_H_ _

#endif

Figure 1: Header-File Interposition

expranly print AST after expression analysis1

ctordtor print AST after ctor/dtor are replaced2

tuple print AST after tuple expansion3

instgen print AST after instantiate generics4

bbox print AST before box pass5

bcodegen print AST before code generation6

--prelude-dir <directory> prelude directory for debug/nodebug7

-S, --statistics <option-list> enable profiling information: counters, heap, time, all, none8

-t, --tree build in tree9

6 Backquote Identifiers10

C

A

introduces several new keywords (see Section C, p. 76) that can clash with existing C variable-names in legacy11

code. Keyword clashes are accommodated by syntactic transformations using the C

A

backquote escape-mechanism:12

int
`̀

coroutine = 3; // make keyword an identifier13

double
`̀

forall = 3.5;14

Existing C programs with keyword clashes can be converted by prefixing the keyword identifiers with double back-15

quotes, and eventually the identifier name can be changed to a non-keyword name. Figure 1 shows how clashes in16

existing C header-files (see Section D, p. 76) can be handled using preprocessor interposition: #include_next and17

command-line -I filename. Several common C header-files with keyword clashes are fixed in the standard C

A

header-18

library, so there is largely a seamless programming-experience.19

7 Constant Underscores20

Numeric constants are extended to allow underscores as a separator, e.g.:21

2_147_483_648; // decimal constant22

56_ul; // decimal unsigned long constant23

0_377; // octal constant24

0x_ff_ff; // hexadecimal constant25

0x_ef3d_aa5c; // hexadecimal constant26

3.141_592_654; // floating constant27

10_e_+1_00; // floating constant28

0x_ff_ff_p_3; // hexadecimal floating29

0x_1.ffff_ffff_p_128_l; // hexadecimal floating long constant30

L_"\x_ff_ee"; // wide character constant31

The rules for placement of underscores are:32

1. A sequence of underscores is disallowed, e.g., 12_ _34 is invalid.33

2. Underscores may only appear within a sequence of digits (regardless of the digit radix). In other words, an34

underscore cannot start or end a sequence of digits, e.g., _1, 1_ and _1_ are invalid (actually, the 1st and 3rd35

examples are identifier names).36



6 9.1 if / while Statement

3. A numeric prefix may end with an underscore; a numeric infix may begin and/or end with an underscore; a1

numeric suffix may begin with an underscore. For example, the octal 0 or hexadecimal 0x prefix may end with2

an underscore 0_377 or 0x_ff; the exponent infix E may start or end with an underscore 1.0_E10, 1.0E_10 or3

1.0_E_10; the type suffixes U, L, etc. may start with an underscore 1_U, 1_ll or 1.0E10_f.4

It is significantly easier to read and enter long constants when they are broken up into smaller groupings (most cultures5

use comma and/or period among digits for the same purpose). This extension is backwards compatible, matches with6

the use of underscore in variable names, and appears in Ada and Java 8. C++ uses the single quote (') as a separator,7

restricted within a sequence of digits, e.g., 0xaa'ff, 3.141'592E1'1. However, the drawback of the C++ approach is8

differentiating between character and numeric constants by IDEs, as quotes are no longer balanced ('x' and 3.14'159).9

8 Exponentiation Operator10

Exponentiation, xy, means raise x to the yth power. When y is a positive integer, exponentiation corresponds to ∏
y
i=1 x.11

C, C++, Java and other programming languages have no exponentiation operator, using a routine like pow( x, y )12

instead. Ada, Haskell, Python and other programming languages often use operators ∧ or ** for exponentiation.13

However, neither of these operators work in C as ∧ means exclusive-or and ** means double dereference. Furthermore,14

using a routine for exponentiation does not match with mathematical expectation, i.e., -x**-y becomes pow( -x, -y ).15

C

A

extends the basic C operator set with symbol \ (backslash) as the exponentiation operator, represented by16

routines ?\? and ?\=?, respectively. For example, x \ y and x \= y mean xy and x← xy. The priority of the exponentiation17

operator is between the cast and multiplicative operators, so -f(x) \ -g(y) is parenthesized as (-f(x)) \ (-g(y)). The C pow18

routines continues to be available for backwards compatibility.19

Exponentiation is overloaded for integral and floating types, including the builtin complex types. Integral expo-20

nentiation is performed with repeated multiplication (O(logy) or shifting if the exponent is 2. Overflow for a large21

exponent or negative exponent returns zero. Floating exponentiation is performed using logarithms, so the exponent22

cannot be negative.23

sout | 1 \ 0 | 1 \ 1 | 2 \ 8 | -4 \ 3 | 5 \ 3 | 5 \ 32 | 5L \ 32 | 5L \ 64 | -4 \ -3 | -4.0 \ -3 | 4.0 \ 2.1 | (1.0f+2.0fi) \ (3.0f+2.0fi);24

1 1 256 -64 125 0 3273344365508751233 0 0 -0.015625 18.3791736799526 0.264715-1.1922i25

Note, 5 \ 32 and 5L \ 64 overflow, and -4 \ -3 is a fraction but stored in an integer so all three computations generate26

an integral zero. Because exponentiation has higher priority than +, parenthesis are required for exponentiation of27

complex constants or the expression is parsed as 1.0f+(2.0fi \ 3.0f)+2.0fi, requiring (1.0f+2.0fi) \ (3.0f+2.0fi).28

The exponentiation operator is available for all the basic types, but for user-defined types, only the integral-29

computation version is available.30

forall( T | { void ?{}( T & this, one_t ); T ?*?( T, T ); } )31

T ?\?( T ep, unsigned int y );32

forall( T | { void ?{}( T & this, one_t ); T ?*?( T, T ); } )33

T ?\?( T ep, unsigned long int y );34

A user type T must define one (1) and multiplication (*) (see Section 26.4, p. 68).35

9 Control Structures36

C

A

identifies inconsistent, problematic, and missing control structures in C, and extends, modifies, and adds control37

structures to increase functionality and safety.38

9.1 if / while Statement39

The if and while expressions are extended with declarations, similar to the for declaration expression.440

if ( int x = f() ) ... // x != 041

if ( int x = f(), y = g() ) ... // x != 0 && y != 042

if ( int x = f(), y = g(); x < y ) ... // relational expression43

if ( struct S { int i; } x = { f() }; x.i < 4 ) // relational expression44

45

while ( int x = f() ) ... // x != 046

while ( int x = f(), y = g() ) ... // x != 0 && y != 047

4Declarations in the do-while condition are not useful because they appear after the loop body.



9.2 case Clause 7

while ( int x = f(), y = g(); x < y ) ... // relational expression1

while ( struct S { int i; } x = { f() }; x.i < 4 ) ... // relational expression2

Unless a relational expression is specified, each variable is compared not equal to 0, which is the standard semantics3

for the if/while expression, and the results are combined using the logical && operator. The scope of the declaration(s)4

is local to the if/while statement, i.e., in both then and else clauses for if, and loop body for while. C++ only provides a5

single declaration always compared != to 0.6

9.2 case Clause7

C restricts the case clause in a switch statement to a single value. For multiple case clauses prefixing a statement8

within the switch statement, it is necessary to have multiple case clauses rather than multiple values. Requiring a case9

clause for each value is not in the spirit of brevity normally associated with C. Therefore, the case clause is extended10

with a list of values.11

C C

A

switch ( i ) {

case 1: case 3 : case 5:

...

case 2: case 4 : case 6:

...

}

switch ( i ) {

case 1, 3, 5:

...

case 2, 4, 6:

...

}

// odd values

// even values

12

In addition, inclusive ranges are allowed using symbol ∼ to specify a contiguous set of case values, both positive and13

negative.14

C C

A

gcc

switch ( i ) {

case -4: case -3: case -2: case -1:

...

case 10: case 11: case 12: case 13:

...

}

switch ( i ) {

case -4∼-1:

...

case 10∼13:

...

}

switch ( i ) {

case -4 ...-1:

...

case 10 ...13:

...

}

// -4, -3, -2, -1

// 10, 11, 12, 13

15

While gcc has the same range mechanism, it has an awkward syntax, 2 ...42, because a space is required after the16

lower bound, otherwise the period is a decimal point.17

C

A

also allows lists of subranges.18

case -5∼-1, 12∼21, 35∼42:19

9.3 switch Statement20

C allows a number of questionable forms for the switch statement:21

1. By default, the end of a case clause5 falls through to the next case clause in the switch statement; to exit a22

switch statement from a case clause requires explicitly terminating the clause with a transfer statement, most23

commonly break:24

switch ( i ) {25

case 1:26

...27

// fall-through28

case 2:29

...30

break; // exit switch statement31

}32

The ability to fall-through to the next clause is a useful form of control flow, specifically when a sequence of33

case actions compound:34

5In this section, the term case clause refers to either a case or default clause.



8 9.3 switch Statement

switch ( argc ) {

case 3:

// open output file

// fall-through

case 2:

// open input file

break; // exit switch statement

default:

// usage message

}

if ( argc == 3 ) {

// open output file

// open input file

} else if ( argc == 2 ) {

// open input file (duplicate)

} else {

// usage message

}

1

In this example, case 2 is always done if case 3 is done. This control flow is difficult to simulate with if statements2

or a switch statement without fall-through as code must be duplicated or placed in a separate routine. C also3

uses fall-through to handle multiple case-values resulting in the same action:4

switch ( i ) {5

case 1: case 3: case 5: // odd values6

// odd action7

break;8

case 2: case 4: case 6: // even values9

// even action10

break;11

}12

This situation is better handled by a list of case values (see Section 9.2).13

While fall-through itself is not a problem, the problem occurs when fall-through is the default, as this seman-14

tics is unintuitive for many programmers and is different from most programming languages with a switch state-15

ment. Hence, default fall-through semantics results in errors as programmers often forget the break statement at16

the end of a case clause, resulting in inadvertent fall-through.17

2. It is possible to place case clauses on statements nested within the body of the switch statement:18

switch ( i ) {19

case 0:20

if ( j < k ) {21

...22

case 1: // transfer into "if" statement23

...24

} // if25

This usage branches into control structures, which causes comprehension and technical difficulties. The compre-26

hension problem results from the inability to determine how control reaches a particular point due to the number27

of branches leading to it. The technical problem results from the inability to ensure declaration and initialization28

of variables when blocks are not entered at the beginning. There are few arguments for this kind of control flow,29

and therefore, there is a strong impetus to eliminate it. This C idiom is known as “Duff’s device” [10], from the30

example:31

register int n = (count + 7) / 8;32

switch ( count % 8 ) {33

case 0: do{ *to = *from++;34

case 7: *to = *from++;35

case 6: *to = *from++;36

case 5: *to = *from++;37

case 4: *to = *from++;38

case 3: *to = *from++;39

case 2: *to = *from++;40

case 1: *to = *from++;41

} while ( --n > 0 );42

}43

which unrolls a loop N times (N = 8 above) and uses the switch statement to deal with any iterations not a44

multiple of N. While efficient, this sort of special purpose usage is questionable:45

Disgusting, no? But it compiles and runs just fine. I feel a combination of pride and revulsion at this46



9.3 switch Statement 9

discovery. [10]1

3. It is possible to place the default clause anywhere in the list of labelled clauses for a switch statement, rather than2

only at the end. Most programming languages with a switch statement require the default clause to appear last3

in the case-clause list. The logic for this semantics is that after checking all the case clauses without success, the4

default clause is selected; hence, physically placing the default clause at the end of the case clause list matches5

with this semantics. This physical placement can be compared to the physical placement of an else clause at the6

end of a series of connected if/else statements.7

4. It is possible to place unreachable code at the start of a switch statement, as in:8

switch ( x ) {9

int y = 1; // unreachable initialization10

x = 7; // unreachable code without label/branch11

case 0: ...12

...13

int z = 0; // unreachable initialization, cannot appear after case14

z = 2;15

case 1:16

x = z; // without fall through, z is uninitialized17

}18

While the declaration of the local variable y is useful with a scope across all case clauses, the initialization19

for such a variable is defined to never be executed because control always transfers over it. Furthermore, any20

statements before the first case clause can only be executed if labelled and transferred to using a goto, either21

from outside or inside of the switch, where both are problematic. As well, the declaration of z cannot occur22

after the case because a label can only be attached to a statement, and without a fall-through to case 3, z is23

uninitialized. The key observation is that the switch statement branches into a control structure, i.e., there are24

multiple entry points into its statement body.25

Before discussing potential language changes to deal with these problems, it is worth observing that in a typical C26

program:27

• the number of switch statements is small,28

• most switch statements are well formed (i.e., no Duff’s device),29

• the default clause is usually written as the last case-clause,30

• and there is only a medium amount of fall-through from one case clause to the next, and most of these result31

from a list of case values executing common code, rather than a sequence of case actions that compound.32

These observations put into perspective the C

A

changes to the switch statement.33

1. Eliminating default fall-through has the greatest potential for affecting existing code. However, even if fall-34

through is removed, most switch statements would continue to work because of the explicit transfers already35

present at the end of each case clause, the common placement of the default clause at the end of the case list,36

and the most common use of fall-through, i.e., a list of case clauses executing common code, e.g.:37

case 1: case 2: case 3: ...38

still works. Nevertheless, reversing the default action would have a non-trivial effect on case actions that com-39

pound, such as the above example of processing shell arguments. Therefore, to preserve backwards com-40

patibility, it is necessary to introduce a new kind of switch statement, called choose, with no implicit fall-41

through semantics and an explicit fall-through if the last statement of a case-clause ends with the new keyword42

fallthrough, e.g.:43

choose ( i ) {44

case 1: case 2: case 3:45

...46

// implicit end of switch (break)47

case 5:48

...49

fallthrough; // explicit fall through50

case 7:51

...52

break // explicit end of switch (redundant)53



10 9.4 Non-terminating and Labelled fallthrough

default:1

j = 3;2

}3

Like the switch statement, the choose statement retains the fall-through semantics for a list of case clauses. An4

implicit break is applied only at the end of the statements following a case clause. An explicit fallthrough is5

retained because it is a C-idiom most C programmers expect, and its absence might discourage programmers6

from using the choose statement. As well, allowing an explicit break from the choose is a carry over from the7

switch statement, and expected by C programmers.8

2. Duff’s device is eliminated from both switch and choose statements, and only invalidates a small amount of9

very questionable code. Hence, the case clause must appear at the same nesting level as the switch/choose10

body, as is done in most other programming languages with switch statements.11

3. The issue of default at locations other than at the end of the cause clause can be solved by using good program-12

ming style, and there are a few reasonable situations involving fall-through where the default clause needs to13

appear is locations other than at the end. Therefore, no change is made for this issue.14

4. Dealing with unreachable code in a switch/choose body is solved by restricting declarations and initialization to15

the start of statement body, which is executed before the transfer to the appropriate case clause6 and precluding16

statements before the first case clause. Further declarations at the same nesting level as the statement body are17

disallowed to ensure every transfer into the body is sound.18

switch ( x ) {19

int i = 0; // allowed only at start20

case 0:21

...22

int j = 0; // disallowed23

case 1:24

{25

int k = 0; // allowed at different nesting levels26

...27

case 2: // disallow case in nested statements28

}29

...30

}31

9.4 Non-terminating and Labelled fallthrough32

The fallthrough clause may be non-terminating within a case clause or have a target label to common code from33

multiple case clauses.34

choose ( ... ) {

case 3:

if ( ... ) {

... fallthrough; // goto case 4

} else {

...

}

// implicit break

case 4:

choose ( ... ) {

case 3:

... fallthrough common;

case 4:

... fallthrough common;

common: // below fallthrough

// at case-clause level

... // common code for cases 3/4

// implicit break

case 4:

choose ( ... ) {

case 3:

choose ( ... ) {

case 4:

for ( ... ) {

// multi-level transfer

... fallthrough common;

}

...

}

...

common: // below fallthrough

// at case-clause level

35

The target label must be below the fallthrough and may not be nested in a control structure, and the target label must36

be at the same or higher level as the containing case clause and located at the same level as a case clause; the target37

label may be case default, but only associated with the current switch/choose statement.38

6Essentially, these declarations are hoisted before the switch/choose statement and both declarations and statement are surrounded by a compound
statement.



9.5 Loop Control 11

9.5 Loop Control1

Looping a predefined number of times, possibly with a loop index, occurs frequently. C

A

condenses writing loops to2

facilitate coding speed and safety.3

for, while, and do loop-control are extended with an empty conditional, meaning a comparison value of 1 (true).4

while ( /* empty */ ) // while ( true )5

for ( /* empty */ ) // for ( ; true; )6

do ... while ( /* empty */ ) // do ... while ( true )7

The for control, i.e., for ( /* control */ ), is extended with a range and step. A range is a set of values defined by an8

optional low value (default to 0), tilde, and high value, L ∼ H, with an optional step ∼ S (default to 1), which means an9

ascending set of values from L to H in positive steps of S.10

0 ∼ 5 // { 0, 1, 2, 3, 4, 5 }11

-8 ∼ -2 ∼ 2 // { -8. -6, -4, -2 }12

-3 ∼ 3 ∼ 1 // { -3, -2, -1, 0, 1, 2, 3 }13

Warning: A range in descending order, e.g., 5 ∼ -3 is the null (empty) set, i.e., no values in the set. Warning: A 014

or negative step is undefined. Note, the order of values in a set may not be the order the values are presented during15

looping.16

The range character, '∼', is decorated on the left and right to control how the set values are presented in the loop17

body. The range character can be prefixed with '+' or '-' indicating the direction the range is scanned, i.e., from18

left to right (ascending) or right to left (descending). Ascending stepping uses operator +=; descending stepping uses19

operator -=. If there is no prefix character, it defaults to '+'.20

-8 ∼ -2 // ascending, no prefix21

0 +∼ 5 // ascending, prefix22

-3 -∼ 3 // descending23

For descending iteration, the L and H values are implicitly switched, and the increment/decrement for S is toggled.24

When changing the iteration direction, this form is faster and safer, i.e., the direction prefix can be added/removed25

without changing existing (correct) program text. Warning: reversing the range endpoints for descending order results26

in an empty set.27

for ( i; 10 -∼ 1 ) // WRONG descending range!28

Because C uses zero origin, most loops iterate from 0 to N− 1. Hence, when scanning a range during iteration,29

the last value is dropped, e.g., 0 ∼ 5 is 0, 1, 2, 3, 4, an exclusive range, [L,H). To obtain all the values in the range, the30

range character is postfixed with '=', e.g., 0 ∼= 5 is 0, 1, 2, 3, 4, 5, an inclusive range, [L,H].31

for control is formalized by the following regular expression:32

[ L ] [ + | - ] ∼ [ = ] H [ ∼ S ]33

where [ ] denotes optional and | denotes alternative. That is, the optional low set value, the optional scan direction34

(ascending/descending), the (possibly) required range character, the optional include last-scan value, the required high35

set value, and the optional range character and step value. Warning: the regular expression allows the form ∼H, but36

this syntax has a preexisting meaning in C: complement the bits of H, e.g., for ( ∼5 ) meaning for ( -6 ), as -6 is the37

complement of 5. This anomaly is unlikely to cause problems because programers should write the shorter for ( 5 ).38

The previous for loops have an anonymous loop index in which the range iteration is computed. To access the39

value of the range iteration in the loop body, a loop index is specified before the range.40

for ( int i; 0 ∼ 10 ∼ 2 ) { ... i ... } // loop index available in loop body41

Hence, unlike the 3 components in the C for-control, there are only two components in the C

A

for-control: the optional42

index variable and the range. The index type is optional (like C++ auto), where the type is normally inferred from the43

low value L because it initializes the index (the type of H can be different from L). When L is omitted, the type of the44

required high value H is used, as both L and H are the same type in this case.45

for ( i; 1.5 ∼ 5 ) // typeof(1.5) i; 1.5 is low value46

for ( i; 5.5 ) // typeof(5.5) i; 5.5 is high value47

The following examples illustrate common C

A

for-control combinations, with the C counter-part in the comment.48

• H is implicit ascending exclusive range [0,H).49

for ( 5 ) // for ( typeof(5) i; i < 5; i += 1 )50

• ∼= H is implicit ascending inclusive range [0,H].51



12 9.6 Labelled continue / break Statement

for ( ∼= 5 ) // for ( typeof(5) i; i <= 5; i += 1 )1

• L ∼ H is explicit ascending exclusive range [L,H).2

for ( 1 ∼ 5 ) // for ( typeof(1) i = 1; i < 5; i += 1 )3

• L ∼= H is explicit ascending inclusive range [L,H].4

for ( 1 ∼= 5 ) // for ( typeof(1) i = 1; i <= 5; i += 1 )5

• L -∼ H is explicit descending exclusive range (H,L], where L and H are implicitly interchanged to make the range6

descending.7

for ( 1 -∼ 5 ) // for ( typeof(1) i = 5; i > 0; i -= 1 )8

• L -∼= H is explicit descending inclusive range [H,L], where L and H are implicitly interchanged to make the9

range descending.10

for ( 1 -∼= 5 ) // for ( typeof(1) i = 5; i >= 0; i -= 1 )11

There are situations when the for-control actions need to be moved into the loop body, e.g., a mid-loop exit does12

not need an iteration-completion test in the for control. The character '@' indicates that a specific for-control action is13

ignored, i.e., generates no code.14

for ( i; @ -∼ 10 ) // for ( typeof(10) i = 10; /*empty*/; i -= 1 )15

for ( i; 1 ∼ @ ∼ 2 ) // for ( typeof(1) i = 1; /* empty */; i += 2 )16

for ( i; 1 ∼ 10 ∼ @ ) // for ( typeof(1) i = 1; i < 10; /* empty */ )17

for ( i; 1 ∼ @ ∼ @ ) // for ( typeof(1) i = 1; /* empty */; /* empty */ )18

Warning: L cannot be elided for the ascending range, @ ∼ 5, nor H for the descending range, 1 -∼ @, as the loop index19

is uninitialized. Warning: H cannot be elided in an anonymous loop index, 1 ∼ @, as there is no index to stop the loop.20

There are situations when multiple loop indexes are required. The character ':' means add another index, where21

any number of indices may be chained in a single for control.22

for ( i; 5 : j; 2 ∼ 12 ∼ 3 ) // for ( typeof(i) i = 1, j = 2; i < 5 && j < 12; i += 1, j += 3 )23

for ( i; 5 : j; 2 ∼ @ ∼ 3 ) // for ( typeof(i) i = 1, j = 2; i < 5; i += 1, j += 3 )24

for ( i; 5 : j; 2.5 ∼ @ ∼ 3.5 ) // no C equivalent, without hoisting declaration of floating-point j25

Figure 2 shows more complex loop-control examples across all the different options.26

Finally, any type that satisfies the Iterate trait can be used with for control.27

forall( T ) trait Iterate {28

void ?{}( T & t, zero_t );29

int ?<?( T t1, T t2 );30

int ?<=?( T t1, T t2 );31

int ?>?( T t1, T t2 );32

int ?>=?( T t1, T t2 );33

T ?+=?( T & t1, T t2 );34

T ?+=?( T & t, one_t );35

T ?-=?( T & t1, T t2 );36

T ?-=?( T & t, one_t );37

}38

Figure 3, p. 14 shows an example of a structure using for control. Note, the use of (S){0} when implicitly setting the39

loop-index type, because using 0 incorrect declares the index to int rather than S.40

9.6 Labelled continue / break Statement41

C continue and break statements are restricted to one level of nesting for a particular control structure. This restriction42

forces programmers to use goto to achieve the equivalent control-flow for more than one level of nesting. To prevent43

having to switch to the goto, C

A

extends the continue and break with a target label to support static multi-level44

exit [4], as in Java. For both continue and break, the target label must be directly associated with a for, while or do45

statement; for break, the target label can also be associated with a switch, if or compound ({}) statement. Figure 4,46

p. 14 shows a comparison between labelled continue and break and the corresponding C equivalent using goto and47

labels. The innermost loop has 8 exit points, which cause continuation or termination of one or more of the 7 nested48

control-structures.49

Both labelled continue and break are a goto restricted in the following ways:50



9.6 Labelled continue / break Statement 13

loop control output

while () { sout | "empty"; break; }

do { sout | "empty"; break; } while ();

for () { sout | "empty"; break; } sout | nl | nlOff;

for ( 0 ) { sout | "A"; } sout | nl;

for ( 1 ) { sout | "A"; } sout | nl;

for ( 10 ) { sout | "A"; } sout | nl;

for ( ∼= 10 ) { sout | "A"; } sout | nl;

for ( 1 ∼= 10 ∼ 2 ) { sout | "B"; } sout | nl;

for ( 1 -∼= 10 ∼ 2 ) { sout | "C"; } sout | nl;

for ( 0.5 ∼ 5.5 ) { sout | "D"; } sout | nl;

for ( 0.5 -∼ 5.5 ) { sout | "E"; } sout | nl;

for ( i; 10 ) { sout | i; } sout | nl;

for ( i; ∼= 10 ) { sout | i; } sout | nl;

for ( i; 1 ∼= 10 ∼ 2 ) { sout | i; } sout | nl;

for ( i; 1 -∼= 10 ∼ 2 ) { sout | i; } sout | nl;

for ( i; 0.5 ∼ 5.5 ) { sout | i; } sout | nl;

for ( i; 0.5 -∼ 5.5 ) { sout | i; } sout | nl;

for ( ui; 2u ∼= 10u ∼ 2u ) { sout | ui; } sout | nl;

for ( ui; 2u -∼= 10u ∼ 2u ) { sout | ui; } sout | nl | nl | nl;

enum { N = 10 };

for ( N ) { sout | "N"; } sout | nl;

for ( i; N ) { sout | i; } sout | nl;

for ( i; -∼ N ) { sout | i; } sout | nl | nl | nl;

const int low = 3, high = 10, inc = 2;

for ( i; low ∼ high ∼ inc + 1 ) { sout | i; } sout | nl;

for ( i; 1 ∼ @ ) { if ( i > 10 ) break; sout | i; } sout | nl;

for ( i; @ -∼ 10 ) { if ( i < 0 ) break; sout | i; } sout | nl;

for ( i; 2 ∼ @ ∼ 2 ) { if ( i > 10 ) break; sout | i; } sout | nl;

for ( i; 2.1 ∼ @ ∼ @ ) { if ( i > 10.5 ) break; sout | i; i += 1.7; } sout | nl;

for ( i; @ -∼ 10 ∼ 2 ) { if ( i < 0 ) break; sout | i; } sout | nl;

for ( i; 12.1 ∼ @ ∼ @ ) { if ( i < 2.5 ) break; sout | i; i -= 1.7; } sout | nl;

for ( i; 5 : j; -5 ∼ @ ) { sout | i | j; } sout | nl;

for ( i; 5 : j; @ -∼ -5 ) { sout | i | j; } sout | nl;

for ( i; 5 : j; -5 ∼ @ ∼ 2 ) { sout | i | j; } sout | nl;

for ( i; 5 : j; @ -∼ -5 ∼ 2 ) { sout | i | j; } sout | nl;

for ( i; 5 : j; -5 ∼ @ ) { sout | i | j; } sout | nl;

for ( i; 5 : j; @ -∼ -5 ) { sout | i | j; } sout | nl;

for ( i; 5 : j; -5 ∼ @ ∼ 2 ) { sout | i | j; } sout | nl;

for ( i; 5 : j; @ -∼ -5 ∼ 2 ) { sout | i | j; } sout | nl;

for ( i; 5 : j; @ -∼ -5 ∼ 2 : k; 1.5 ∼ @ ) { sout | i | j | k; } sout | nl;

for ( i; 5 : j; @ -∼ -5 ∼ 2 : k; 1.5 ∼ @ ) { sout | i | j | k; } sout | nl;

for ( i; 5 : k; 1.5 ∼ @ : j; @ -∼ -5 ∼ 2 ) { sout | i | j | k; } sout | nl;

empty

empty

empty

A

A A A A A A A A A A

A A A A A A A A A A A

B B B B B

C C C C C

D D D D D

E E E E E

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10

1 3 5 7 9

10 8 6 4 2

0.5 1.5 2.5 3.5 4.5

5.5 4.5 3.5 2.5 1.5

2 4 6 8 10

10 8 6 4 2

N N N N N N N N N N

0 1 2 3 4 5 6 7 8 9

10 9 8 7 6 5 4 3 2 1

3 6 9

1 2 3 4 5 6 7 8 9 10

10 9 8 7 6 5 4 3 2 1 0

2 4 6 8 10

2.1 3.8 5.5 7.2 8.9

10 8 6 4 2 0

12.1 10.4 8.7 7. 5.3 3.6

0 -5 1 -4 2 -3 3 -2 4 -1

0 -5 1 -6 2 -7 3 -8 4 -9

0 -5 1 -3 2 -1 3 1 4 3

0 -5 1 -7 2 -9 3 -11 4 -13

0 -5 1 -4 2 -3 3 -2 4 -1

0 -5 1 -6 2 -7 3 -8 4 -9

0 -5 1 -3 2 -1 3 1 4 3

0 -5 1 -7 2 -9 3 -11 4 -13

0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5

0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5

0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5

Figure 2: Loop Control Examples



14 9.6 Labelled continue / break Statement

struct S { int i, j; };

void ?{}( S & s, int i = 0, int j = 0 ) { s.[i, j] = [i, j]; }

void ?{}( S & s, zero_t ) { s.[i, j] = 0; }

int ?<?( S t1, S t2 ) { return t1.i < t2.i && t1.j < t2.j; }

int ?<=?( S t1, S t2 ) { return t1.i <= t2.i && t1.j <= t2.j; }

int ?>?( S t1, S t2 ) { return t1.i > t2.i && t1.j > t2.j; }

int ?>=?( S t1, S t2 ) { return t1.i >= t2.i && t1.j >= t2.j; }

S ?+=?( S & t1, S t2 ) { t1.i += t2.i; t1.j += t2.j; return t1; }

S ?+=?( S & t, one_t ) { t.i += 1; t.j += 1; return t; }

S ?-=?( S & t1, S t2 ) { t1.i -= t2.i; t1.j -= t2.j; return t1; }

S ?-=?( S & t, one_t ) { t.i -= 1; t.j -= 1; return t; }

ofstream & ?|?( ofstream & os, S s ) {

return os | "(" | s.i | s.j | ")";

}

void & ?|?( ofstream & os, S s ) {

(ofstream &)(os | s); ends( os );

}

int main() {

for ( S i = 0; i < (S){10,10}; i += 1 ) { sout | i; } sout | "A" | nl; // C

for ( S i; 0 ∼ (S){10,10} ) { sout | i; } sout | "B" | nl; // CFA

for ( i; (S){10,10} ) { sout | i; } sout | "C" | nl;

for ( i; (S){0} ∼ (S){10,10} ) { sout | i; } sout | "D" | nl;

for ( i; (S){0} ∼= (S){10,10} ) { sout | i; } sout | "E" | nl;

for ( i; (S){0} ∼= (S){10,10} ∼ (S){2} ) { sout | i; } sout | "F" | nl;

for ( i; (S){0} -∼ (S){10,10} ) { sout | i; } sout | "G" | nl;

for ( i; (S){0} -∼= (S){10,10} ) { sout | i; } sout | "H" | nl;

for ( i; (S){0} -∼= (S){10,10} ∼ (S){2,1} ) { sout | i; } sout | "I" | nl;

}

(0 0) (1 1) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9) A

(0 0) (1 1) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9) B

(0 0) (1 1) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9) C

(0 0) (1 1) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9) D

(0 0) (1 1) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9) (10 10) E

(0 0) (2 0) (4 0) (6 0) (8 0) (10 0) F

(10 10) (9 9) (8 8) (7 7) (6 6) (5 5) (4 4) (3 3) (2 2) (1 1) G

(10 10) (9 9) (8 8) (7 7) (6 6) (5 5) (4 4) (3 3) (2 2) (1 1) (0 0) H

(10 10) (8 9) (6 8) (4 7) (2 6) (0 5) I

Figure 3: For Control with Structure Type

{

ForC: for ( ... ) {

WhileC: while ( ... ) {

DoC: do {

if ( ... ) {

switch ( ... ) {

case 3:

goto Compound;

goto Try;

goto ForB; /* or */ goto ForC;

goto WhileB; /* or */ goto WhileC;

goto DoB; /* or */ goto DoC;

goto If;

goto Switch;

} Switch: ;

} else {

... goto If; ... // terminate if

} If:;

} while ( ... ); DoB: ;

} WhileB: ;

} ForB: ;

} Compound: ;

a) C

Compound: {

Try: try {

For: for ( ... ) {

While: while ( ... ) {

Do: do {

If: if ( ... ) {

Switch: switch ( ... ) {

case 3:

break Compound;

break Try;

break For; /* or */ continue For;

break While; /* or */ continue While;

break Do; /* or */ continue Do;

break If;

break Switch;

} // switch

} else {

... break If; ... // terminate if

} // if

} while ( ... ); // do

} // while

} // for

} finally { // always executed

} // try

} // compound

b) C

A

Figure 4: Multi-level Exit



9.7 Extended else 15

• They cannot create a loop, which means only the looping constructs cause looping. This restriction means all1

situations resulting in repeated execution are clearly delineated.2

• They cannot branch into a control structure. This restriction prevents missing declarations and/or initializations3

at the start of a control structure resulting in undefined behaviour.4

The advantage of the labelled continue/break is allowing static multi-level exits without having to use the goto state-5

ment, and tying control flow to the target control structure rather than an arbitrary point in a program via a label.6

Furthermore, the location of the label at the beginning of the target control structure informs the reader (eye candy)7

that complex control-flow is occurring in the body of the control structure. With goto, the label is at the end of the8

control structure, which fails to convey this important clue early enough to the reader. Finally, using an explicit target9

for the transfer, instead of an implicit target, allows new constructs to be added or removed without affecting existing10

constructs. Otherwise, the implicit targets of the current continue and break, i.e., the closest enclosing loop or switch,11

change as certain constructs are added or removed.12

9.7 Extended else13

The if statement has an optional else clause executed if the conditional is false. This concept is extended to the while,14

for, and do looping constructs (like Python). Hence, if the loop conditional becomes false, looping stops and the15

corresponding else clause is executed, if present.16

The following example is a linear search for the key 3 in an array, where finding the key is handled with a break17

and not finding with the else clause on the loop construct.18

19

int a[10];20

while ( int i = 0; i < 10 ) {

if ( a[i] == 3 ) break; // found

i += 1;

} else { // i == 10

sout | "not found";

}

for ( i; 10 ) {

if ( a[i] == 3 ) break; // found

} else { // i == 10

sout | "not found";

}

int i = 0;

do {

if ( a[i] == 3 ) break; // found

i += 1;

} while( i < 10 ) else { // i == 10

sout | "not found";

}

21

Note, dangling else now occurs with if, while, for, do, and waitfor.22

9.8 with Statement23

Grouping heterogeneous data into an aggregate (structure/union) is a common programming practice, and aggregates24

may be nested:25

struct Person { // aggregate26

struct Name { // nesting27

char first[20], last[20];28

} name;29

struct Address { // nesting30

...31

} address;32

int sex;33

};34

Functions manipulating aggregates must repeat the aggregate name to access its containing fields.35

Person p36

p.name ...; p.address ...; p.sex ...; // access containing fields37

which extends to multiple levels of qualification for nested aggregates and multiple aggregates.38

struct Ticket { ... } t;39

p.name.first ...; p.address.street ...; // access nested fields40

t.departure ...; t.cost ...; // access multiple aggregate41

Repeated aggregate qualification is tedious and makes code difficult to read. Therefore, reducing aggregate qualifica-42

tion is a useful language design goal.43



16 9.8 with Statement

C partially addresses the problem by eliminating qualification for enumerated types and unnamed nested aggre-1

gates, which open their scope into the containing aggregate. This feature is used to group fields for attributes and/or2

with union aggregates.3

struct S {4

struct /* unnamed */ { int g, h; } _ _attribute_ _(( aligned(64) ));5

int tag;6

union /* unnamed */ {7

struct { char c1, c2; } _ _attribute_ _(( aligned(128) ));8

struct { int i1, i2; };9

struct { double d1, d2; };10

};11

} s;12

enum { R, G, B };13

s.g; s.h; s.tag = R; s.c1; s.c2; s.i1 = G; s.i2 = B; s.d1; s.d2;14

Object-oriented languages reduce qualification for class variables within member functions, e.g., C++:15

struct S {16

char c; int i; double d;17

void f( /* S * this */ ) { // implicit “this” parameter18

c; i; d; // this->c; this->i; this->d;19

}20

}21

In general, qualification is elided for the variables and functions in the lexical scopes visible from a member function.22

However, qualification is necessary for name shadowing and explicit aggregate parameters.23

struct T {24

char m; int i; double n; // derived class variables25

};26

struct S : public T {27

char c; int i; double d; // class variables28

void g( double d, T & t ) {29

d; t.m; t.i; t.n; // function parameter30

c; i; this->d; S::d; // class S variables31

m; T::i; n; // class T variables32

}33

};34

Note the three different forms of qualification syntax in C++, ., ->, ::, which is confusing.35

Since C

A

in not object-oriented, it has no implicit parameter with its implicit qualification. Instead C

A

introduces36

a general mechanism using the with statement (see Pascal [23, § 4.F]) to explicitly elide aggregate qualification by37

opening a scope containing the field identifiers. Hence, the qualified fields become variables with the side-effect that38

it is simpler to write, easier to read, and optimize field references in a block.39

void f( S & this ) with ( this ) { // with statement40

c; i; d; // this.c, this.i, this.d41

}42

with the generality of opening multiple aggregate-parameters:43

void g( S & s, T & t ) with ( s, t ) { // multiple aggregate parameters44

c; s.i; d; // s.c, s.i, s.d45

m; t.i; n; // t.m, t.i, t.n46

}47

where qualification is only necessary to disambiguate the shadowed variable i. In detail, the with statement may form48

a function body or be nested within a function body.49

The with clause takes a list of expressions, where each expression provides an aggregate type and object. (Enu-50

merations are already opened.) To open a pointer type, the pointer must be dereferenced to obtain a reference to the51

aggregate type.52

S * sp;53

with ( *sp ) { ... }54

The expression object is the implicit qualifier for the open structure-fields.55



10 Exception Handling 17

C

A

’s ability to overload variables (see Section 26.2, p. 67) and use the left-side of assignment in type resolution1

means most fields with the same name but different types are automatically disambiguated, eliminating qualification.2

All expressions in the expression list are open in parallel within the compound statement. This semantic is different3

from Pascal, which nests the openings from left to right. The difference between parallel and nesting occurs for fields4

with the same name and type:5

struct Q { int i; int k; int m; } q, w;6

struct R { int i; int j; double m; } r, w;7

with ( r, q ) {8

j + k; // unambiguous, r.j + q.k9

m = 5.0; // unambiguous, q.m = 5.010

m = 1; // unambiguous, r.m = 111

int a = m; // unambiguous, a = r.i12

double b = m; // unambiguous, b = q.m13

int c = r.i + q.i; // disambiguate with qualification14

(double)m; // disambiguate with cast15

}16

For parallel semantics, both r.i and q.i are visible, so i is ambiguous without qualification; for nested semantics, q.i17

hides r.i, so i implies q.i. Pascal nested-semantics is possible by nesting with statements.18

with ( r ) {19

i; // unambiguous, r.i20

with ( q ) {21

i; // unambiguous, q.i22

}23

}24

A cast or qualification can be used to disambiguate variables within a with statement. A cast can also be used to25

disambiguate among overload variables in a with expression:26

with ( w ) { ... } // ambiguous, same name and no context27

with ( (Q)w ) { ... } // unambiguous, cast28

Because there is no left-side in the with expression to implicitly disambiguate between the w variables, it is necessary29

to explicitly disambiguate by casting w to type Q or R.30

Finally, there is an interesting problem between parameters and the function-body with, e.g.:31

void f( S & s, char c ) with ( s ) {32

s.c = c; i = 3; d = 5.5; // initialize fields33

}34

Here, the assignment s.c = c means s.c = s.c, which is meaningless, and there is no mechanism to qualify the parameter35

c, making the assignment impossible using the function-body with. To solve this problem, parameters not explicitly36

opened are treated like an initialized aggregate:37

struct Params { // s explicitly opened so S & s elided38

char c;39

} params;40

and implicitly opened after a function-body open, to give them higher priority:41

void f( S & s, char c ) with ( s ) with( params ) { // syntax disallowed, illustration only42

s.c = c; i = 3; d = 5.5;43

}44

This implicit semantic matches with programmer expectation.45

10 Exception Handling46

Exception handling provides two mechanism: change of control flow from a raise to a handler, and communication47

from the raise to the handler. Transfer of control can be local, within a routine, or non-local, among routines. Non-local48

transfer can cause stack unwinding, i.e., non-local routine termination, depending on the kind of raise.49

Currently, C

A

uses macros ExceptionDecl and ExceptionInst to declare and instantiate an exception.50

#include <Exception.hfa>51

ExceptionDecl( E, // must be global scope52



18 10.2 Exception Hierarchy

... // exception fields1

);2

try {3

...4

if ( ... ) throwResume ExceptionInst( E, /* intialization */ );5

if ( ... ) throw ExceptionInst( E, /* intialization */ );6

...7

} catchResume( E * ) { // must be pointer8

...9

} catch( E * ) {10

...11

}12

exception_t E {}; // exception type13

void f(...) {14

... throw E{}; ... // termination15

... throwResume E{}; ... // resumption16

}17

try {18

f(...);19

} catch( E e ; boolean-predicate ) { // termination handler20

// recover and continue21

} catchResume( E e ; boolean-predicate ) { // resumption handler22

// repair and return23

} finally {24

// always executed25

}26

The kind of raise and handler match: throw with catch and throwResume with catchResume. Then the exception type27

must match along with any additional predicate must be true. The catch and catchResume handlers may appear in28

any oder. However, the finally clause must appear at the end of the try statement.29

10.1 Non-local Exception30

void main() {31

try {32

_Enable {33

... resume(); ...34

}35

} catchResume( E & ) { // should be reference36

...37

} catch( E & ) {38

...39

}40

}41

10.2 Exception Hierarchy42

An exception type can be derived from another exception type, just like deriving a subclass from a class, providing43

a kind of polymorphism among exception types. The exception-type hierarchy that is created is used to organize44

exception types, similar to a class hierarchy in object-oriented languages, e.g.:45

IO Arithmetic

File Network DivideByZero Overflow Underflow

Exception

46

A programmer can then choose to handle an exception at different degrees of specificity along the hierarchy; derived47

exception-types support a more flexible programming style. For example, higher-level code should catch general48

exceptions to reduce coupling to the specific implementation at the lower levels; unnecessary coupling may force49



11 Alternative Declarations 19

changes in higher-level code when low-level code changes. A consequence of derived exception-types is that multiple1

exceptions may match, e.g.:2

catch( Arithmetic )3

matches all three derived exception-types: DivideByZero, Overflow, and Underflow. Because the propagation mecha-4

nisms perform a simple linear search of the handler clause for a guarded block, and selects the first matching handler,5

the order of catch clauses in the handler clause becomes important, e.g.:6

try {7

...8

} catch( Overflow ) { // must appear first9

// handle overflow10

} catch( Arithmetic )11

// handle other arithmetic issues12

}13

Multiple derivation among exception is not supported.14

11 Alternative Declarations15

C declaration syntax is notoriously confusing and error prone. For example, many C programmers are confused by a16

declaration as simple as:17

int * x[5] 1 2 3 40

0 1 2 3 4

x x
18

Is this an array of 5 pointers to integers or a pointer to an array of 5 integers? If there is any doubt, it implies19

productivity and safety issues even for basic programs. Another example of confusion results from the fact that a20

routine name and its parameters are embedded within the return type, mimicking the way the return value is used at21

the routine’s call site. For example, a routine returning a pointer to an array of integers is defined and used in the22

following way:23

int (*f())[5] {...}; // definition24

... (*f())[3] += 1; // usage25

Essentially, the return type is wrapped around the routine name in successive layers (like an onion). While attempting26

to make the two contexts consistent is a laudable goal, it has not worked out in practice, even though Dennis Richie27

believed otherwise:28

In spite of its difficulties, I believe that the C’s approach to declarations remains plausible, and am com-29

fortable with it; it is a useful unifying principle. [27, p. 12]30

C

A

provides its own type, variable and routine declarations, using a different syntax. The new declarations place31

qualifiers to the left of the base type, while C declarations place qualifiers to the right of the base type. In the following32

example, red is the base type and blue is qualifiers. The C

A

declarations move the qualifiers to the left of the base33

type, i.e., move the blue to the left of the red, while the qualifiers have the same meaning but are ordered left to right34

to specify a variable’s type.35

C C

A

int * x1 [5];

int (*x2)[5];

int (*f( int p ))[5];

[5] * int x1;

* [5] int x2;

[* [5] int] f( int p );

36

The only exception is bit field specification, which always appear to the right of the base type. However, unlike C, C

A

37

type declaration tokens are distributed across all variables in the declaration list. For instance, variables x and y of type38

pointer to integer are defined in C

A

as follows:39

C C

A

int *x, *y; * int x, y;
40

The downside of this semantics is the need to separate regular and pointer declarations:41



20 12 Pointer / Reference

C C

A

int *x, y; * int x;

int y;

1

which is prescribing a safety benefit. Other examples are:2

C C

A

int z[ 5 ];

char * w[ 5 ];

double (* v)[ 5 ];

struct s {

int f0:3;

int * f1;

int * f2[ 5 ]

};

[ 5 ] int z;

[ 5 ] * char w;

* [ 5 ] double v;

struct s {

int f0:3;

* int f1;

[ 5 ] * int f2;

};

// array of 5 integers

// array of 5 pointers to char

// pointer to array of 5 doubles

// common bit field syntax

3

All type qualifiers, e.g., const, volatile, etc., are used in the normal way with the new declarations and also appear4

left to right, e.g.:5

C C

A

int const * const x;

const int (* const y)[ 5 ]

const * const int x;

const * [ 5 ] const int y;

// const pointer to const integer

// const pointer to array of 5 const integers

6

All declaration qualifiers, e.g., extern, static, etc., are used in the normal way with the new declarations but can only7

appear at the start of a C

A

routine declaration,7 e.g.:8

C C

A

int extern x[ 5 ];

const int static * y;

extern [ 5 ] int x;

static * const int y;

// externally visible array of 5 integers

// internally visible pointer to constant int

9

The new declaration syntax can be used in other contexts where types are required, e.g., casts and the pseudo-10

routine sizeof:11

C C
A

y = (int *)x;

i = sizeof(int * [ 5 ]);

y = (* int)x;

i = sizeof([ 5 ] * int);

12

Finally, new C

A

declarations may appear together with C declarations in the same program block, but cannot be13

mixed within a specific declaration. Therefore, a programmer has the option of either continuing to use traditional C14

declarations or take advantage of the new style. Clearly, both styles need to be supported for some time due to existing15

C-style header-files, particularly for UNIX-like systems.16

12 Pointer / Reference17

C provides a pointer type; C

A

adds a reference type. These types may be derived from an object or routine type, called18

the referenced type. Objects of these types contain an address, which is normally a location in memory, but may also19

address memory-mapped registers in hardware devices. An integer constant expression with the value 0, or such an20

expression cast to type void *, is called a null-pointer constant.8 An address is sound, if it points to a valid memory21

location in scope, i.e., within the program’s execution-environment and has not been freed. Dereferencing an unsound22

address, including the null pointer, is undefined, often resulting in a memory fault.23

A program object is a region of data storage in the execution environment, the contents of which can represent24

values. In most cases, objects are located in memory at an address, and the variable name for an object is an implicit25

address to the object generated by the compiler and automatically dereferenced, as in:26

7 The placement of a storage-class specifier other than at the beginning of the declaration specifiers in a declaration is an obsolescent feature. [21,
§ 6.11.5(1)]

8One way to conceptualize the null pointer is that no variable is placed at this address, so the null-pointer address can be used to denote an uninitialized
pointer/reference object; i.e., the null pointer is guaranteed to compare unequal to a pointer to any object or routine. In general, a value with special
meaning among a set of values is called a sentinel value, e.g., -1 as a return code value.



12 Pointer / Reference 21

int x;

x = 3;

int y;

y = x;

3

3
104

100

x

y
int

int int * const x = (int *)100

*x = 3; // implicit dereference

int * const y = (int *)104;

*y = *x; // implicit dereference

1

where the right example is how the compiler logically interprets the variables in the left example. Since a variable2

name only points to one address during its lifetime, it is an immutable pointer; hence, the implicit type of pointer3

variables x and y are constant pointers in the compiler interpretation. In general, variable addresses are stored in4

instructions instead of loaded from memory, and hence may not occupy storage. These approaches are contrasted in5

the following:6

explicit variable address implicit variable address

lda r1,100 // load address of x

ld r2,(r1) // load value of x

lda r3,104 // load address of y

st r2,(r3) // store x into y

ld r2,(100) // load value of x

st r2,(104) // store x into y

7

Finally, the immutable nature of a variable’s address and the fact that there is no storage for the variable pointer means8

pointer assignment is impossible. Therefore, the expression x = y has only one meaning, *x = *y, i.e., manipulate values,9

which is why explicitly writing the dereferences is unnecessary even though it occurs implicitly as part of instruction10

decoding.11

A pointer/reference object is a generalization of an object variable-name, i.e., a mutable address that can point to12

more than one memory location during its lifetime. (Similarly, an integer variable can contain multiple integer literals13

during its lifetime versus an integer constant representing a single literal during its lifetime, and like a variable name,14

may not occupy storage if the literal is embedded directly into instructions.) Hence, a pointer occupies memory to15

store its current address, and the pointer’s value is loaded by dereferencing, e.g.:16

int x, y, * p1, * p2, ** p3;

p1 = &x; // p1 points to x

p2 = p1; // p2 points to x

p1 = &y; // p1 points to y

p3 = &p2; // p3 points to p2 104

y
int

112

p2
3 int *100

100

x
int

108

p1
3 int *

116

p3
104 112 int **

17

Notice, an address has a duality: a location in memory or the value at that location. In many cases, a compiler18

might be able to infer the best meaning for these two cases. For example, Algol68 [24] infers pointer dereferencing to19

select the best meaning for each pointer usage20

p2 = p1 + x; // compiler infers *p2 = *p1 + x;21

Algol68 infers the following dereferencing *p2 = *p1 + x, because adding the arbitrary integer value in x to the address22

of p1 and storing the resulting address into p2 is an unlikely operation. Unfortunately, automatic dereferencing does23

not work in all cases, and so some mechanism is necessary to fix incorrect choices.24

Rather than inferring dereference, most programming languages pick one implicit dereferencing semantics, and the25

programmer explicitly indicates the other to resolve address-duality. In C, objects of pointer type always manipulate26

the pointer object’s address:27

p1 = p2; // p1 = p2 rather than *p1 = *p228

p2 = p1 + x; // p2 = p1 + x rather than *p2 = *p1 + x29

even though the assignment to p2 is likely incorrect, and the programmer probably meant:30

p1 = p2; // pointer address assignment31

*p2 = *p1 + x; // pointed-to value assignment / operation32

The C semantics work well for situations where manipulation of addresses is the primary meaning and data is rarely33

accessed, such as storage management (malloc/free).34

However, in most other situations, the pointed-to value is requested more often than the pointer address.35

*p2 = ((*p1 + *p2) * (**p3 - *p1)) / (**p3 - 15);36

In this case, it is tedious to explicitly write the dereferencing, and error prone when pointer arithmetic is allowed. It is37

better to have the compiler generate the dereferencing and have no implicit pointer arithmetic:38

p2 = ((p1 + p2) * (p3 - p1)) / (p3 - 15);39

To support this common case, a reference type is introduced in C

A

, denoted by &, which is the opposite dereference40



22 12 Pointer / Reference

semantics to a pointer type, making the value at the pointed-to location the implicit semantics for dereferencing (similar1

but not the same as C++ reference types).2

int x, y, & r1, & r2, && r3;3

&r1 = &x; // r1 points to x4

&r2 = &r1; // r2 points to x5

&r1 = &y; // r1 points to y6

&&r3 = &&r2; // r3 points to r27

r2 = ((r1 + r2) * (r3 - r1)) / (r3 - 15); // implicit dereferencing8

Except for auto-dereferencing by the compiler, this reference example is the same as the previous pointer example.9

Hence, a reference behaves like the variable name for the current variable it is pointing-to. One way to conceptualize a10

reference is via a rewrite rule, where the compiler inserts a dereference operator before the reference variable for each11

reference qualifier in a declaration, so the previous example becomes:12

*r2 = ((*r1 + *r2) * (**r3 - *r1)) / (**r3 - 15);13

When a reference operation appears beside a dereference operation, e.g., &*, they cancel out. However, in C, the can-14

cellation always yields a value (rvalue).9 For a C

A

reference type, the cancellation on the left-hand side of assignment15

leaves the reference as an address (lvalue):16

(&*)r1 = &x; // (&*) cancel giving address in r1 not variable pointed-to by r117

Similarly, the address of a reference can be obtained for assignment or computation (rvalue):18

(&(&*)*)r3 = &(&*)r2; // (&*) cancel giving address in r2, (&(&*)*) cancel giving address in r319

Cancellation works to arbitrary depth.20

Fundamentally, pointer and reference objects are functionally interchangeable because both contain addresses.21

int x, *p1 = &x, **p2 = &p1, ***p3 = &p2,22

&r1 = x, &&r2 = r1, &&&r3 = r2;23

***p3 = 3; // change x24

r3 = 3; // change x, ***r325

**p3 = ...; // change p126

&r3 = ...; // change r1, (&*)**r3, 1 cancellation27

*p3 = ...; // change p228

&&r3 = ...; // change r2, (&(&*)*)*r3, 2 cancellations29

&&&r3 = p3; // change r3 to p3, (&(&(&*)*)*)r3, 3 cancellations30

Furthermore, both types are equally performant, as the same amount of dereferencing occurs for both types. Therefore,31

the choice between them is based solely on whether the address is dereferenced frequently or infrequently, which32

dictates the amount of implicit dereferencing aid from the compiler.33

As for a pointer type, a reference type may have qualifiers:34

const int cx = 5; // cannot change cx;35

const int & cr = cx; // cannot change what cr points to36

&cr = &cx; // can change cr37

cr = 7; // error, cannot change cx38

int & const rc = x; // must be initialized39

&rc = &x; // error, cannot change rc40

const int & const crc = cx; // must be initialized41

crc = 7; // error, cannot change cx42

&crc = &cx; // error, cannot change crc43

Hence, for type & const, there is no pointer assignment, so &rc = &x is disallowed, and the address value cannot be the44

null pointer unless an arbitrary pointer is coerced into the reference:45

int & const cr = *0; // where 0 is the int * zero46

Note, constant reference-types do not prevent addressing errors because of explicit storage-management:47

int & const cr = *malloc();48

cr = 5;49

free( &cr );50

9The unary & operator yields the address of its operand. If the operand has type “type”, the result has type “pointer to type”. If the operand is the
result of a unary * operator, neither that operator nor the & operator is evaluated and the result is as if both were omitted, except that the constraints
on the operators still apply and the result is not an lvalue. [21, § 6.5.3.2–3]



12.1 Initialization 23

cr = 7; // unsound pointer dereference1

The position of the const qualifier after the pointer/reference qualifier causes confuse for C programmers. The2

const qualifier cannot be moved before the pointer/reference qualifier for C style-declarations; C

A

-style declarations3

(see Section 11, p. 19) attempt to address this issue:4

C C

A

const int * const * const ccp; const * const * const int ccp;

const & const & const int ccr;

5

where the C

A

declaration is read left-to-right.6

Finally, like pointers, references are usable and composable with other type operators and generators.7

int w, x, y, z, & ar[3] = { x, y, z }; // initialize array of references8

&ar[1] = &w; // change reference array element9

typeof( ar[1] ) p; // (gcc) is int, i.e., the type of referenced object10

typeof( &ar[1] ) q; // (gcc) is int &, i.e., the type of reference11

sizeof( ar[1] ) == sizeof( int ); // is true, i.e., the size of referenced object12

sizeof( &ar[1] ) == sizeof( int *) // is true, i.e., the size of a reference13

In contrast to C

A

reference types, C++’s reference types are all const references, preventing changes to the reference14

address, so only value assignment is possible, which eliminates half of the address duality. Also, C++ does not allow15

arrays of reference10 Java’s reference types to objects (all Java objects are on the heap) are like C pointers, which16

always manipulate the address, and there is no (bit-wise) object assignment, so objects are explicitly cloned by shallow17

or deep copying, which eliminates half of the address duality.18

12.1 Initialization19

Initialization is different than assignment because initialization occurs on the empty (uninitialized) storage on an20

object, while assignment occurs on possibly initialized storage of an object. There are three initialization contexts21

in C

A

: declaration initialization, argument/parameter binding, return/temporary binding. Because the object being22

initialized has no value, there is only one meaningful semantics with respect to address duality: it must mean address23

as there is no pointed-to value. In contrast, the left-hand side of assignment has an address that has a duality. Therefore,24

for pointer/reference initialization, the initializing value must be an address not a value.25

int * p = &x; // assign address of x26

int * p = x; // assign value of x27

int & r = x; // must have address of x28

Like the previous example with C pointer-arithmetic, it is unlikely assigning the value of x into a pointer is meaningful29

(again, a warning is usually given). Therefore, for safety, this context requires an address, so it is superfluous to30

require explicitly taking the address of the initialization object, even though the type is incorrect. Note, this is strictly31

a convenience and safety feature for a programmer. Hence, C

A

allows r to be assigned x because it infers a reference32

for x, by implicitly inserting a address-of operator, &, and it is an error to put an & because the types no longer match33

due to the implicit dereference. Unfortunately, C allows p to be assigned with &x (address) or x (value), but most34

compilers warn about the latter assignment as being potentially incorrect. Similarly, when a reference type is used for35

a parameter/return type, the call-site argument does not require a reference operator for the same reason.36

int & f( int & r ); // reference parameter and return37

z = f( x ) + f( y ); // reference operator added, temporaries needed for call results38

Within routine f, it is possible to change the argument by changing the corresponding parameter, and parameter r can39

be locally reassigned within f. Since operator routine ?+? takes its arguments by value, the references returned from f40

are used to initialize compiler generated temporaries with value semantics that copy from the references.41

int temp1 = f( x ), temp2 = f( y );42

z = temp1 + temp2;43

This implicit referencing is crucial for reducing the syntactic burden for programmers when using references; other-44

wise references have the same syntactic burden as pointers in these contexts.45

When a pointer/reference parameter has a const value (immutable), it is possible to pass literals and expressions.46

10The reason for disallowing arrays of reference is unknown, but possibly comes from references being ethereal (like a textual macro), and hence,
replaceable by the referent object.



24 12.2 Address-of Semantics

void f( const int & cr );1

void g( const int * cp );2

f( 3 ); g( &3 );3

f( x + y ); g( &(x + y) );4

Here, the compiler passes the address to the literal 3 or the temporary for the expression x + y, knowing the argument5

cannot be changed through the parameter. The & before the constant/expression for the pointer-type parameter (g) is a6

C

A

extension necessary to type match and is a common requirement before a variable in C (e.g., scanf). Importantly,7

&3 may not be equal to &3, where the references occur across calls because the temporaries maybe different on each8

call.9

C

A

extends this semantics to a mutable pointer/reference parameter, and the compiler implicitly creates the nec-10

essary temporary (copying the argument), which is subsequently pointed-to by the reference parameter and can be11

changed.11
12

void f( int & r );13

void g( int * p );14

f( 3 ); g( &3 ); // compiler implicit generates temporaries15

f( x + y ); g( &(x + y) ); // compiler implicit generates temporaries16

Essentially, there is an implicit rvalue to lvalue conversion in this case.12 The implicit conversion allows seamless17

calls to any routine without having to explicitly name/copy the literal/expression to allow the call.18

Finally, C handles routine objects in an inconsistent way. A routine object is both a pointer and a reference (particle19

and wave).20

void f( int i );21

void (* fp)( int ); // routine pointer22

fp = f; // reference initialization23

fp = &f; // pointer initialization24

fp = *f; // reference initialization25

fp(3); // reference invocation26

(*fp)(3); // pointer invocation27

While C’s treatment of routine objects has similarity to inferring a reference type in initialization contexts, the exam-28

ples are assignment not initialization, and all possible forms of assignment are possible (f, &f, *f) without regard for29

type. Instead, a routine object should be referenced by a const reference:30

const void (& fr)( int ) = f; // routine reference31

fr = ...; // error, cannot change code32

&fr = ...; // changing routine reference33

fr( 3 ); // reference call to f34

(*fr)(3); // error, incorrect type35

because the value of the routine object is a routine literal, i.e., the routine code is normally immutable during execu-36

tion.13 C

A

allows this additional use of references for routine objects in an attempt to give a more consistent meaning37

for them.38

12.2 Address-of Semantics39

In C, &E is an rvalue for any expression E. C

A

extends the & (address-of) operator as follows:40

• if R is an rvalue of type T &1 · · · &r, where r ≥ 1 references (& symbols), than &R has type T *&2· · · &r, i.e., T41

pointer with r− 1 references (& symbols).42

• if L is an lvalue of type T &1 · · · &l , where l ≥ 0 references (& symbols), than &L has type T *&1· · · &l , i.e., T43

pointer with l references (& symbols).44

The following example shows the first rule applied to different rvalue contexts:45

int x, * px, ** ppx, *** pppx, **** ppppx;46

int & rx = x, && rrx = rx, &&& rrrx = rrx ;47

x = rrrx; // rrrx is an lvalue with type int &&& (equivalent to x)48

11If whole program analysis is possible, and shows the parameter is not assigned, i.e., it is const, the temporary is unnecessary.
12This conversion attempts to address the const hell problem, when the innocent addition of a const qualifier causes a cascade of type failures,

requiring an unknown number of additional const qualifiers, until it is discovered a const qualifier cannot be added and all the const qualifiers must
be removed.

13Dynamic code rewriting is possible but only in special circumstances.



12.3 Conversions 25

px = &rrrx; // starting from rrrx, &rrrx is an rvalue with type int *&&& (&x)1

ppx = &&rrrx; // starting from &rrrx, &&rrrx is an rvalue with type int **&& (&rx)2

pppx = &&&rrrx; // starting from &&rrrx, &&&rrrx is an rvalue with type int ***& (&rrx)3

ppppx = &&&&rrrx; // starting from &&&rrrx, &&&&rrrx is an rvalue with type int **** (&rrrx)4

The following example shows the second rule applied to different lvalue contexts:5

int x, * px, ** ppx, *** pppx;6

int & rx = x, && rrx = rx, &&& rrrx = rrx ;7

rrrx = 2; // rrrx is an lvalue with type int &&& (equivalent to x)8

&rrrx = px; // starting from rrrx, &rrrx is an rvalue with type int *&&& (rx)9

&&rrrx = ppx; // starting from &rrrx, &&rrrx is an rvalue with type int **&& (rrx)10

&&&rrrx = pppx; // starting from &&rrrx, &&&rrrx is an rvalue with type int ***& (rrrx)11

12.3 Conversions12

C provides a basic implicit conversion to simplify variable usage:13

0. lvalue to rvalue conversion: cv T converts to T, which allows implicit variable dereferencing.14

int x;15

x + 1; // lvalue variable (int) converts to rvalue for expression16

An rvalue has no type qualifiers (cv), so the lvalue qualifiers are dropped.17

C

A

provides three new implicit conversion for reference types to simplify reference usage.18

1. reference to rvalue conversion: cv T & converts to T, which allows implicit reference dereferencing.19

int x, &r = x, f( int p );20

x = r + f( r ); // lvalue reference converts to rvalue21

An rvalue has no type qualifiers (cv), so the reference qualifiers are dropped.22

2. lvalue to reference conversion: lvalue-type cv1 T converts to cv2 T &, which allows implicitly converting vari-23

ables to references.24

int x, &r = x, f( int & p ); // lvalue variable (int) convert to reference (int &)25

f( x ); // lvalue variable (int) convert to reference (int &)26

Conversion can restrict a type, where cv1 ≤ cv2, e.g., passing an int to a const volatile int &, which has low cost.27

Conversion can expand a type, where cv1 > cv2, e.g., passing a const volatile int to an int &, which has high cost28

(warning); furthermore, if cv1 has const but not cv2, a temporary variable is created to preserve the immutable29

lvalue.30

3. rvalue to reference conversion: T converts to cv T &, which allows binding references to temporaries.31

int x, & f( int & p );32

f( x + 3 ); // rvalue parameter (int) implicitly converts to lvalue temporary reference (int &)33

&f(...) = &x; // rvalue result (int &) implicitly converts to lvalue temporary reference (int &)34

In both case, modifications to the temporary are inaccessible (warning). Conversion expands the temporary-type35

with cv, which is low cost since the temporary is inaccessible.36

13 string Type37

The C

A

string type is for manipulation of dynamically-size character-strings versus C char * type for manipulation of38

statically-size null-terminated character-strings. That is, the amount of storage for a C

A

string changes dynamically39

at runtime to fit the string size, whereas the amount of storage for a C string is fixed at compile time. Hence, a40

string declaration does not specify a maximum length; as a string dynamically grows and shrinks in size, so does its41

underlying storage. In contrast, a C string also dynamically grows and shrinks is size, but its underlying storage is42

fixed. The maximum storage for a C

A

string value is size_t characters, which is 232 or 264 respectively. A C

A

string43

manages its length separately from the string, so there is no null ('\0') terminating value at the end of a string value.44

Hence, a C

A

string cannot be passed to a C string manipulation routine, such as strcat. Like C strings, the characters45

in a string are numbered starting from 0.46

The following operations have been defined to manipulate an instance of type string. The discussion assumes the47

following declarations and assignment statements are executed.48

#include <string.hfa>49



26 13.2 Size (length)

// string s = 5; sout | s;

string s;

// conversion of char and char * to string

s = 'x'; sout | s;

s = "abc"; sout | s;

char cs[5] = "abc";

s = cs; sout | s;

// conversion of integral, floating-point, and complex to string

s = 45hh; sout | s;

s = 45h; sout | s;

s = -(ssize_t)MAX - 1; sout | s;

s = (size_t)MAX; sout | s;

s = 5.5; sout | s;

s = 5.5L; sout | s;

s = 5.5+3.4i; sout | s;

s = 5.5L+3.4Li; sout | s;

x

abc

abc

45

45

-9223372036854775808

18446744073709551615

5.5

5.5

5.5+3.4i

5.5+3.4i

Figure 5: Implicit Conversions to String

string s, peter, digit, alpha, punctuation, ifstmt;1

int i;2

peter = "PETER";3

digit = "0123456789";4

punctuation = "().,";5

ifstmt = "IF (A > B) {";6

Note, the include file string.hfa to access type string.7

13.1 Implicit String Conversions8

The types char, char *, int, double, _Complex, including different signness and sizes, implicitly convert to type string.9

Figure 5 shows examples of implicit conversions between C strings, integral, floating-point and complex types to10

string. A conversions can be explicitly specified:11

s = string( "abc" ); // converts char * to string12

s = string( 5 ); // converts int to string13

s = string( 5.5 ); // converts double to string14

All conversions from string to char *, attempt to be safe: either by requiring the maximum length of the char * storage15

(strncpy) or allocating the char * storage for the string characters (ownership), meaning the programmer must free the16

storage. As well, a string is always null terminates, implying a minimum size of 1 character.17

string s = "abcde";

char cs[3];

strncpy( cs, s, sizeof(cs) ); sout | cs;

char * cp = s; sout | cp;

delete( cp );

cp = s + ' ' + s; sout | cp;

delete( cp );

ab

abcde

abcde abcde

18

13.2 Size (length)19

The size operation returns the length of a string.20

i = size( "" ); // i is assigned 021

i = size( "abc" ); // i is assigned 322

i = size( peter ); // i is assigned 523



13.3 Comparison Operators 27

13.3 Comparison Operators1

The binary relational operators, <, <=, >, >=, and equality operators, ==, !=, compare strings using lexicographical2

ordering, where longer strings are greater than shorter strings.3

13.4 Concatenation4

The binary operators + and += concatenate two strings, creating the sum of the strings.5

s = peter + ' ' + digit; // s is assigned "PETER 0123456789"6

s += peter; // s is assigned "PETER 0123456789PETER"7

13.5 Repetition8

The binary operators * and *= repeat a string N times. If N = 0, a zero length string, "" is returned.9

s = 'x' * 3; // s is assigned "PETER PETER PETER "10

s = (peter + ' ') * 3; // s is assigned "PETER PETER PETER "11

13.6 Substring12

The substring operation returns a subset of the string starting at a position in the string and traversing a length.13

s = peter( 2, 3 ); // s is assigned "ETE"14

s = peter( 4, -3 ); // s is assigned "ETE", length is opposite direction15

s = peter( 2, 8 ); // s is assigned "ETER", length is clipped to 416

s = peter( 0, -1 ); // s is assigned "", beyond string so clipped to null17

s = peter(-1, -1 ); // s is assigned "R", start and length are negative18

A negative starting position is a specification from the right end of the string. A negative length means that characters19

are selected in the opposite (right to left) direction from the starting position. If the substring request extends beyond20

the beginning or end of the string, it is clipped (shortened) to the bounds of the string. If the substring request is21

completely outside of the original string, a null string located at the end of the original string is returned. The substring22

operation can also appear on the left hand side of the assignment operator. The substring is replaced by the value on23

the right hand side of the assignment. The length of the right-hand-side value may be shorter, the same length, or24

longer than the length of the substring that is selected on the left hand side of the assignment.25

digit( 3, 3 ) = ""; // digit is assigned "0156789"26

digit( 4, 3 ) = "xyz"; // digit is assigned "015xyz9"27

digit( 7, 0 ) = "***"; // digit is assigned "015xyz***9"28

digit(-4, 3 ) = "$$$"; // digit is assigned "015xyz$$$9"29

A substring is treated as a pointer into the base (substringed) string rather than creating a copy of the subtext. As with30

all pointers, if the item they are pointing at is changed, then the pointer is referring to the changed item. Pointers to31

the result value of a substring operation are defined to always start at the same location in their base string as long as32

that starting location exists, independent of changes to themselves or the base string. However, if the base string value33

changes, this may affect the values of one or more of the substrings to that base string. If the base string value shortens34

so that its end is before the starting location of a substring, resulting in the substring starting location disappearing, the35

substring becomes a null string located at the end of the base string.36

The following example illustrates passing the results of substring operations by reference and by value to a sub-37

program. Notice the side-effects to other reference parameters as one is modified.38

main() {39

string x = "xxxxxxxxxxxxx";40

test( x, x(1,3), x(3,3), x(5,5), x(9,5), x(9,5) );41

}42

43

// x, a, b, c, & d are substring results passed by reference44

// e is a substring result passed by value45

void test(string &x, string &a, string &b, string &c, string &d, string e) {46

// x a b c d e47

a( 1, 2 ) = "aaa"; // aaaxxxxxxxxxxx aaax axx xxxxx xxxxx xxxxx48

b( 2, 12 ) = "bbb"; // aaabbbxxxxxxxxx aaab abbb bbxxx xxxxx xxxxx49



28 13.7 Searching

c( 4, 5 ) = "ccc"; // aaabbbxcccxxxxxx aaab abbb bbxccc ccxxx xxxxx1

c = "yyy"; // aaabyyyxxxxxx aaab abyy yyy xxxxx xxxxx2

d( 1, 3 ) = "ddd"; // aaabyyyxdddxx aaab abyy yyy dddxx xxxxx3

e( 1, 3 ) = "eee"; // aaabyyyxdddxx aaab abyy yyy dddxx eeexx4

x = e; // eeexx eeex exx x eeexx5

}6

There is an assignment form of substring in which only the starting position is specified and the length is assumed7

to be the remainder of the string.8

string operator () (int start);9

For example:10

s = peter( 2 ); // s is assigned "ETER"11

peter( 2 ) = "IPER"; // peter is assigned "PIPER"12

It is also possible to substring using a string as the index for selecting the substring portion of the string.13

string operator () (const string &index);14

For example:15

digit( "xyz$$$" ) = "678"; // digit is assigned "0156789"16

digit( "234") = "***"; // digit is assigned "0156789***"17

13.7 Searching18

The index operation19

int index( const string &key, int start = 1, occurrence occ = first );20

returns the position of the first or last occurrence of the key (depending on the occurrence indicator occ that is either21

first or last) in the current string starting the search at position start. If the key does not appear in the current string, the22

length of the current string plus one is returned. A negative starting position is a specification from the right end of the23

string.24

i = digit.index( "567" ); // i is assigned 325

i = digit.index( "567", 7 ); // i is assigned 1126

i = digit.index( "567", -1, last ); // i is assigned 327

i = peter.index( "E", 5, last ); // i is assigned 428

The next two string operations test a string to see if it is or is not composed completely of a particular class of29

characters. For example, are the characters of a string all alphabetic or all numeric? Use of these operations involves30

a two step operation. First, it is necessary to create an instance of type strmask and initialize it to a string containing31

the characters of the particular character class, as in:32

strmask digitmask = digit;33

strmask alphamask = string( "abcdefghijklmnopqrstuvwxyz" );34

Second, the character mask is used in the functions include and exclude to check a string for compliance of its characters35

with the characters indicated by the mask.36

The include operation37

int include( const strmask &, int = 1, occurrence occ = first );38

returns the position of the first or last character (depending on the occurrence indicator, which is either first or last) in39

the current string that does not appear in the mask starting the search at position start; hence it skips over characters40

in the current string that are included (in) the mask. The characters in the current string do not have to be in the same41

order as the mask. If all the characters in the current string appear in the mask, the length of the current string plus one42

is returned, regardless of which occurrence is being searched for. A negative starting position is a specification from43

the right end of the string.44

i = peter.include( digitmask ); // i is assigned 145

i = peter.include( alphamask ); // i is assigned 646

The exclude operation47

int exclude( string &mask, int start = 1, occurrence occ = first )48



13.8 Miscellaneous 29

returns the position of the first or last character (depending on the occurrence indicator, which is either first or last) in1

the current string that does appear in the mask string starting the search at position start; hence it skips over characters2

in the current string that are excluded from (not in) in the mask string. The characters in the current string do not have3

to be in the same order as the mask string. If all the characters in the current string do NOT appear in the mask string,4

the length of the current string plus one is returned, regardless of which occurrence is being searched for. A negative5

starting position is a specification from the right end of the string.6

i = peter.exclude( digitmask ); // i is assigned 67

i = ifstmt.exclude( strmask( punctuation ) ); // i is assigned 48

The includeStr operation:9

string includeStr( strmask &mask, int start = 1, occurrence occ = first )10

returns the longest substring of leading or trailing characters (depending on the occurrence indicator, which is either11

first or last) of the current string that ARE included in the mask string starting the search at position start. A negative12

starting position is a specification from the right end of the string.13

s = peter.includeStr( alphamask ); // s is assigned "PETER"14

s = ifstmt.includeStr( alphamask ); // s is assigned "IF"15

s = peter.includeStr( digitmask ); // s is assigned ""16

The excludeStr operation:17

string excludeStr( strmask &mask, int start = 1, occurrence = first )18

returns the longest substring of leading or trailing characters (depending on the occurrence indicator, which is either19

first or last) of the current string that are excluded (NOT) in the mask string starting the search at position start. A20

negative starting position is a specification from the right end of the string.21

s = peter.excludeStr( digitmask); // s is assigned "PETER"22

s = ifstmt.excludeStr( strmask( punctuation ) ); // s is assigned "IF "23

s = peter.excludeStr( alphamask); // s is assigned ""24

13.8 Miscellaneous25

The trim operation26

string trim( string &mask, occurrence occ = first )27

returns a string in that is the longest substring of leading or trailing characters (depending on the occurrence indicator,28

which is either first or last) which ARE included in the mask are removed.29

// remove leading blanks30

s = string( " ABC" ).trim( " " ); // s is assigned "ABC",31

// remove trailing blanks32

s = string( "ABC " ).trim( " ", last ); // s is assigned "ABC",33

The translate operation34

string translate( string &from, string &to )35

returns a string that is the same length as the original string in which all occurrences of the characters that appear in the36

from string have been translated into their corresponding character in the to string. Translation is done on a character37

by character basis between the from and to strings; hence these two strings must be the same length. If a character in38

the original string does not appear in the from string, then it simply appears as is in the resulting string.39

// upper to lower case40

peter = peter.translate( "ABCDEFGHIJKLMNOPQRSTUVWXYZ", "abcdefghijklmnopqrstuvwxyz" );41

// peter is assigned "peter"42

s = ifstmt.translate( "ABCDEFGHIJKLMNOPQRSTUVWXYZ", "abcdefghijklmnopqrstuvwxyz" );43

// ifstmt is assigned "if (a > b) {"44

// lower to upper case45

peter = peter.translate( "abcdefghijklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZ" );46

// peter is assigned "PETER"47

The replace operation48

string replace( string &from, string &to )49

returns a string in which all occurrences of the from string in the current string have been replaced by the to string.50



30 13.10 C Compatibility

char [] string

strcpy, strncpy =

strcat, strncat +

strcmp, strncmp ==, !=, <, <=, >, >=

strlen size

[] []

strstr find

strcspn find_first_of, find_last_of

strspc find_fist_not_of, find_last_not_of

Table 1: Companion Routines for C

A

string to C Strings

s = peter.replace( "E", "XX" ); // s is assigned "PXXTXXR"1

The replacement is done left-to-right. When an instance of the from string is found and changed to the to string, it is2

NOT examined again for further replacement.3

13.9 Returning N+1 on Failure4

Any of the string search routines can fail at some point during the search. When this happens it is necessary to return5

indicating the failure. Many string types in other languages use some special value to indicate the failure. This value6

is often 0 or -1 (PL/I returns 0). This section argues that a value of N+1, where N is the length of the base string in the7

search, is a more useful value to return. The index-of function in APL returns N+1. These are the boundary situations8

and are often overlooked when designing a string type.9

The situation that can be optimized by returning N+1 is when a search is performed to find the starting location for10

a substring operation. For example, in a program that is extracting words from a text file, it is necessary to scan from11

left to right over whitespace until the first alphabetic character is found.12

line = line( line.exclude( alpha ) );13

If a text line contains all whitespaces, the exclude operation fails to find an alphabetic character. If exclude returns 0 or14

-1, the result of the substring operation is unclear. Most string types generate an error, or clip the starting value to 1,15

resulting in the entire whitespace string being selected. If exclude returns N+1, the starting position for the substring16

operation is beyond the end of the string leaving a null string.17

The same situation occurs when scanning off a word.18

start = line.include(alpha);19

word = line(1, start - 1);20

If the entire line is composed of a word, the include operation will fail to find a non-alphabetic character. In general,21

returning 0 or -1 is not an appropriate starting position for the substring, which must substring off the word leaving a22

null string. However, returning N+1 will substring off the word leaving a null string.23

13.10 C Compatibility24

To ease conversion from C to C

A

, there are companion string routines for C strings. Table 1 shows the C routines on25

the left that also work with string and the rough equivalent string opeation of the right. Hence, it is possible to directly26

convert a block of C string operations into @string@ just by changing the27

For example, this block of C code can be converted to C

A

by simply changing the type of variable s from char [] to28

string.29

char s[32];30

//string s;31

strcpy( s, "abc" ); PRINT( %s, s );32

strncpy( s, "abcdef", 3 ); PRINT( %s, s );33

strcat( s, "xyz" ); PRINT( %s, s );34

strncat( s, "uvwxyz", 3 ); PRINT( %s, s );35

PRINT( %zd, strlen( s ) );36

PRINT( %c, s[3] );37

PRINT( %s, strstr( s, "yzu" ) ) ;38



13.11 Input/Output Operators 31

PRINT( %s, strstr( s, 'y' ) ) ;1

However, the conversion fails with I/O because printf cannot print a string using format code %s because C

A

strings are2

not null terminated.3

13.11 Input/Output Operators4

Both the C++ operators << and >> are defined on type string. However, input of a string value is different from input of5

a char * value. When a string value is read, all input characters from the current point in the input stream to either the6

end of line ('\n') or the end of file are read.7

14 Enumeration8

An enumeration is a compile-time mechanism to alias names to constants, like typedef is a mechanism to alias names9

to types. Its purpose is to define a restricted-value type providing code-readability and maintenance – changing an10

enum’s value automatically updates all name usages during compilation.11

An enumeration type is a set of names, each called an enumeration constant (shortened to enum) aliased to a fixed12

value (constant).13

enum Days { Mon, Tue, Wed, Thu, Fri, Sat, Sun }; // enumeration type definition, set of 7 names & values14

Days days = Mon; // enumeration type declaration and initialization15

The set of enums is injected into the variable namespace at the definition scope. Hence, enums may be overloaded16

with variable, enum, and function names.17

int Foo; // type/variable separate namespaces18

enum Foo { Bar };19

enum Goo { Bar }; // overload Foo.Bar20

double Bar; // overload Foo.Bar, Goo.Bar21

An anonymous enumeration injects enums with specific values into a scope.22

enum { Prime = 103, BufferSize = 1024 };23

An enumeration is better than using C preprocessor or constant declarations.24

#define Mon 0

...

#define Sun 6

const int Mon = 0,

...,

Sun = 6;

25

because the enumeration is succinct, has automatic numbering, can appear in case labels, does not use storage, and26

is part of the language type-system. Finally, the type of an enum is implicitly or explicitly specified and the constant27

value can be implicitly or explicitly specified. Note, enum values may be repeated in an enumeration.28

14.1 Enum type29

The type of enums can be any type, and an enum’s value comes from this type. Because an enum is a constant, it30

cannot appear in a mutable context, e.g., Mon = Sun is disallowed, and has no address (it is an rvalue). Therefore,31

an enum is automatically converted to its constant’s base-type, e.g., comparing/printing an enum compares/prints its32

value rather than the enum name; there is no mechanism to print the enum name.33

The default enum type is int. Hence, Days is the set type Mon, Tue, ... , Sun, while the type of each enum is int34

and each enum represents a fixed integral value. If no values are specified for an integral enum type, the enums are35

automatically numbered by one from left to right starting at zero. Hence, the value of enum Mon is 0, Tue is 1, ... , Sun36

is 6. If an enum value is specified, numbering continues by one from that value for subsequent unnumbered enums. If37

an enum value is a constant expression, the compiler performs constant-folding to obtain a constant value.38

C

A

allows other integral types with associated values.39

enum( char ) Letter { A = 'A', B, C, I = 'I', J, K };40

enum( long long int ) BigNum { X = 123_456_789_012_345, Y = 345_012_789_456_123 };41

For enumeration Letter, enum A’s value is explicitly set to 'A', with B and C implicitly numbered with increasing42

values from 'A', and similarly for enums I, J, and K.43

Non-integral enum types must be explicitly initialized, e.g., double is not automatically numbered by one.44



32 14.2 Inheritance

// non-integral numeric1

enum( double ) Math { PI_2 = 1.570796, PI = 3.141597, E = 2.718282 }2

// pointer3

enum( char * ) Name { Fred = "Fred", Mary = "Mary", Jane = "Jane" };4

int i, j, k;5

enum( int * ) ptr { I = &i, J = &j, K = &k };6

enum( int & ) ref { I = i, J = j, K = k };7

// tuple8

enum( [int, int] ) { T = [ 1, 2 ] };9

// function10

void f() {...} void g() {...}11

enum( void (*)() ) funs { F = f, F = g };12

// aggregate13

struct S { int i, j; };14

enum( S ) s { A = { 3, 4 }, B = { 7, 8 } };15

// enumeration16

enum( Letter ) Greek { Alph = A, Beta = B, /* more enums */ }; // alphabet intersection17

Enumeration Greek may have more or less enums than Letter, but the enum values must be from Letter. Therefore,18

Greek enums are a subset of type Letter and are type compatible with enumeration Letter, but Letter enums are not type19

compatible with enumeration Greek.20

The following examples illustrate the difference between the enumeration type and the type of its enums.21

Math m = PI; // allowed22

double d = PI; // allowed, conversion to base type23

m = E; // allowed24

m = Alph; // disallowed25

m = 3.141597; // disallowed26

d = m; // allowed27

d = Alph; // disallowed28

Letter l = A; // allowed29

Greek g = Alph; // allowed30

l = Alph; // allowed, conversion to base type31

g = A; // disallowed32

A constructor cannot be used to initialize enums because a constructor executes at runtime. A fallback is explicit33

C-style initialization using @=.34

enum( struct vec3 ) Axis { Up @= { 1, 0, 0 }, Left @= { 0, 1, 0 }, Front @= { 0, 0, 1 } }35

Finally, enumeration variables are assignable and comparable only if the appropriate operators are defined for its enum36

type.37

14.2 Inheritance38

Plan-9 inheritance may be used with enumerations.39

enum( char * ) Name2 { inline Name, Jack = "Jack", Jill = "Jill" };40

enum /* inferred */ Name3 { inline Name2, Sue = "Sue", Tom = "Tom" };41

Enumeration Name2 inherits all the enums and their values from enumeration Name by containment, and a Name42

enumeration is a subtype of enumeration Name2. Note, enums must be unique in inheritance but enum values may be43

repeated. The enum type for the inheriting type must be the same as the inherited type; hence the enum type may be44

omitted for the inheriting enumeration and it is inferred from the inherited enumeration, as for Name3. When inheriting45

from integral types, automatic numbering may be used, so the inheritance placement left to right is important, e.g., the46

placement of Sue and Tom before or after inline Name2.47

Specifically, the inheritance relationship for Names is:48

Name⊆ Name2 ⊆ Name3 ⊆ const char * // enum type of Name49

Hence, given50

void f( Name );51

void g( Name2 );52

void h( Name3 );53



15 Routine Definition 33

void j( const char * );1

the following calls are valid2

f( Fred );3

g( Fred ); g( Jill );4

h( Fred ); h( Jill ); h( Sue );5

j( Fred ); j( Jill ); j( Sue ); j( 'W' );6

Note, the validity of calls is the same for call-by-reference as for call-by-value, and const restrictions are the same as7

for other types.8

Enums cannot be created at runtime, so inheritence problems, such as contra-variance do not apply. Only instances9

of the enum base-type may be created at runtime.10

15 Routine Definition11

C

A

supports a new syntax for routine definition, as well as C11 and K&R routine syntax. The point of the new syntax12

is to allow returning multiple values from a routine [16, 25], e.g.:13

[ int o1, int o2, char o3 ] f( int i1, char i2, char i3 ) {14

routine body15

}16

where routine f has three output (return values) and three input parameters. Existing C syntax cannot be extended with17

multiple return types because it is impossible to embed a single routine name within multiple return type-specifications.18

In detail, the brackets, [], enclose the result type, where each return value is named and that name is a local variable19

of the particular return type.14 The value of each local return variable is automatically returned at routine termination.20

Declaration qualifiers can only appear at the start of a routine definition, e.g.:21

extern [ int x ] g( int y ) { }22

Lastly, if there are no output parameters or input parameters, the brackets and/or parentheses must still be specified; in23

both cases the type is assumed to be void as opposed to old style C defaults of int return type and unknown parameter24

types, respectively, as in:25

[ ] g(); // no input or output parameters26

[ void ] g( void ); // no input or output parameters27

Routine f is called as follows:28

[ i, j, ch ] = f( 3, 'a', ch );29

The list of return values from f and the grouping on the left-hand side of the assignment is called a return list and30

discussed in Section 12.31

C

A

style declarations cannot be used to declare parameters for K&R style routine definitions because of the fol-32

lowing ambiguity:33

int (*f(x))[ 5 ] int x; {}34

The string “int (*f(x))[ 5 ]” declares a K&R style routine of type returning a pointer to an array of 5 integers, while the35

string “[ 5 ] int x” declares a C

A

style parameter x of type array of 5 integers. Since the strings overlap starting with the36

open bracket, [, there is an ambiguous interpretation for the string.37

As well, C

A

-style declarations cannot be used to declare parameters for C-style routine-definitions because of the38

following ambiguity:39

typedef int foo;40

int f( int (* foo) ); // foo is redefined as a parameter name41

The string “int (* foo)” declares a C-style named-parameter of type pointer to an integer (the parenthesis are superflu-42

ous), while the same string declares a C

A

style unnamed parameter of type routine returning integer with unnamed43

parameter of type pointer to foo. The redefinition of a type name in a parameter list is the only context in C where the44

character * can appear to the left of a type name, and C

A

relies on all type qualifier characters appearing to the right of45

the type name. The inability to use C

A

declarations in these two contexts is probably a blessing because it precludes46

programmers from arbitrarily switching between declarations forms within a declaration contexts.47

C-style declarations can be used to declare parameters for C

A

style routine definitions, e.g.:48

14Michael Tiemann, with help from Doug Lea, provided named return values in g++, circa 1989.



34 15.2 Routine Prototype

[ int ] f( * int, int * ); // returns an integer, accepts 2 pointers to integers1

[ * int, int * ] f( int ); // returns 2 pointers to integers, accepts an integer2

The reason for allowing both declaration styles in the new context is for backwards compatibility with existing pre-3

processor macros that generate C-style declaration-syntax, as in:4

#define ptoa( n, d ) int (*n)[ d ]5

int f( ptoa( p, 5 ) ) ... // expands to int f( int (*p)[ 5 ] )6

[ int ] f( ptoa( p, 5 ) ) ... // expands to [ int ] f( int (*p)[ 5 ] )7

Again, programmers are highly encouraged to use one declaration form or the other, rather than mixing the forms.8

15.1 Named Return Values9

Named return values handle the case where it is necessary to define a local variable whose value is then returned in a10

return statement, as in:11

int f() {12

int x;13

... x = 0; ... x = y; ...14

return x;15

}16

Because the value in the return variable is automatically returned when a C

A

routine terminates, the return statement17

does not contain an expression, as in:18

[ int x, int y ] f() {

int z;

... x = 0; ... y = z; ...

return; // implicitly return x, y

}

19

When the return is encountered, the current values of x and y are returned to the calling routine. As well, “falling off20

the end” of a routine without a return statement is permitted, as in:21

[ int x, int y ] f() {22

...23

} // implicitly return x, y24

In this case, the current values of x and y are returned to the calling routine just as if a return had been encountered.25

Named return values may be used in conjunction with named parameter values; specifically, a return and parameter26

can have the same name.27

[ int x, int y ] f( int, x, int y ) {28

...29

} // implicitly return x, y30

This notation allows the compiler to eliminate temporary variables in nested routine calls.31

[ int x, int y ] f( int, x, int y ); // prototype declaration32

int a, b;33

[a, b] = f( f( f( a, b ) ) );34

While the compiler normally ignores parameters names in prototype declarations, here they are used to eliminate35

temporary return-values by inferring that the results of each call are the inputs of the next call, and ultimately, the36

left-hand side of the assignment. Hence, even without the body of routine f (separate compilation), it is possible to37

perform a global optimization across routine calls. The compiler warns about naming inconsistencies between routine38

prototype and definition in this case, and behaviour is undefined if the programmer is inconsistent.39

15.2 Routine Prototype40

The syntax of the new routine prototype declaration follows directly from the new routine definition syntax; as well,41

parameter names are optional, e.g.:42

[ int x ] f (); // returning int with no parameters43

[ * int ] g (int y); // returning pointer to int with int parameter44

[ ] h ( int, char ); // returning no result with int and char parameters45

[ * int, int ] j ( int ); // returning pointer to int and int, with int parameter46



15.3 Postfix Function 35

This syntax allows a prototype declaration to be created by cutting and pasting source text from the routine definition1

header (or vice versa). Like C, it is possible to declare multiple routine-prototypes in a single declaration, where the2

return type is distributed across all routine names in the declaration list (see Section 11, p. 19), e.g.:3

C : const double bar1(), bar2( int ), bar3( double );4

C

A

: [const double] foo(), foo( int ), foo( double ) { return 3.0; }5

C

A

allows the last routine in the list to define its body.6

Declaration qualifiers can only appear at the start of a C

A

routine declaration,7 e.g.:7

extern [ int ] f ( int );8

static [ int ] g ( int );9

15.3 Postfix Function10

C

A

provides an alternative call syntax where the argument appears before the function name. The syntax uses the11

backquote
`

to separate the parameters/arguments and function name: ?
`

denotes a postfix-function name, e.g.,12

int ? h̀( int s ) and
`

denotes a postfix-function call, e.g., 0 h̀ meaning h( 0 ).13

postfix function constant argument call variable argument call postfix function pointer

int ? h̀( int s );

int ? h̀( double s );

int ? m̀( char c );

int ? m̀( const char * s );

int ? t̀( int a, int b, int c );

0 h̀;

3.5 h̀;

'1' m̀;

"123" "456"
`

m;

[1, 2, 3] t̀;

int i = 7;

i h̀;

(i + 3) h̀;

(i + 3.5) h̀;

int (* ? p̀)( int i );

? p̀ = ? h̀;

3 p̀;

i p̀;

(i + 3) p̀;

14

Note, to pass multiple arguments to a postfix function requires a tuple, e.g., [1, 2, 3] t̀, which forms a single argument15

that is flattened into the multiple arguments (see Section 20, p. 39). Similarly, if the argument is an expression, it must16

be parenthesized, e.g., (i + 3) h̀, or only the last operand of the expression is the argument, e.g., i + (3 h̀).17

Figure 6 shows a common example for postfix functions: converting basic literals into user literals. (See Sec-18

tion E.1, p. 77 for other uses for postfix functions.) The C

A

example (left) stores a mass in units of stones (1 stone19

= 14 lb or 6.35 kg) and provides an addition operator ?+? (imagine a full set of arithmetic operators). The arithmetic20

operators manipulate stones and the postfix operations convert to/from different units. The three postfixing function21

names st, lb, and kg, represent units stones, pounds, and kilograms, respectively. Each name has two forms that bidi-22

rectional convert: a value of a specified unit to stones, e.g., w = 14 l̀b⇒ w == 1 stone or a Weight from stones back to23

specific units, e.g., w l̀b (1 stone) to 14. A similar group of postfix functions provide user constants for converting time24

units into nanoseconds, which is the basic time unit, e.g., ns, us, ms, s, m, h, d, and w, for nanosecond, microsecond,25

millisecond, second, minute, hour, day, and week, respectively. (Note, month is not a fixed period of time nor is year26

because of leap years.)27

The C++ example (right) provides a restricted capability via user literals. The operator"" only takes a constant28

argument (i.e., no variable as an argument), and the constant type must be the highest-level constant-type, e.g.,29

long double for all floating-point constants. As well, there is no constant conversion, i.e., int to double constants,30

so integral constants are handled by a separate set of routines, with maximal integral type unsigned long long int.31

Finally, there is no mechanism to use this syntax for a bidirectional conversion because operator"" only accepts a32

constant argument.33

16 Routine Pointers34

The syntax for pointers to C

A

routines specifies the pointer name on the right, e.g.:35

* [ int x ] () fp; // pointer to routine returning int with no parameters36

* [ * int ] (int y) gp; // pointer to routine returning pointer to int with int parameter37

* [ ] (int,char) hp; // pointer to routine returning no result with int and char parameters38

* [ * int,int ] ( int ) jp; // pointer to routine returning pointer to int and int, with int parameter39

While parameter names are optional, a routine name cannot be specified; for example, the following is incorrect:40

* [ int x ] f () fp; // routine name "f" is disallowed41



36 17.1 Default

C

A

Postfix Routine C++ User Literals

struct Weight {

double stones;

};

Weight ?+?( Weight l, Weight r ) {

return l.stones + r.stones;

}

Weight ? s̀t( double w ) { return w; }

double ? s̀t( Weight w ) { return w.stones; }

Weight ? l̀b( double w ) { return w / 14.0; }

double ? l̀b( Weight w ) { return w.stones * 14.0; }

Weight ? k̀g( double w ) { return w / 6.35; }

double ? k̀g( Weight w ) { return w.stones * 6.35; }

int main() {

Weight w, heavy = { 20 }; // stones

w = 155 l̀b;

w = 0b_1111 s̀t;

w = 0_233 l̀b;

w = 0x_9b k̀g;

w = 5.5 s̀t + 8 k̀g + 25.01 l̀b + heavy;

}

struct Weight {

double stones;

Weight() {}

Weight( double w ) { stones = w; }

};

Weight operator+( Weight l, Weight r ) {

return l.stones + r.stones;

}

Weight operator""_st( long double w ) { return w; }

Weight operator""_lb( long double w ) { return w / 14.0; }

Weight operator""_kg( long double w ) { return w / 6.35; }

Weight operator""_st( unsigned long long int w ) { return w; }

Weight operator""_lb( unsigned long long int w ) { return w / 14.0; }

Weight operator""_kg( unsigned long long int w ) { return w / 6.35; }

int main() {

Weight w, heavy = { 20 }; // stones

w = 155_lb;

w = 0b1111_st;

w = 0'233®_lb®; // quote separator

w = 0x9b®_kg®;

w = 5.5®_st® + 8®_kg® + 25.01®_lb® + heavy;

}

Figure 6: Units: Stone, Pound, Kilogram Comparison

17 Default and Named Parameter1

Default and named parameters [20]15 are two mechanisms to simplify routine call.2

17.1 Default3

A default parameter associates a default value with a parameter so it can be optionally specified in the argument list.4

For example, given the routine prototype:5

void f( int x = 1, int y = 2, int z = 3 );6

allowable calls are:7

positional arguments empty arguments

f(); // rewrite⇒ f( 1, 2, 3 )

f( 4 ); // rewrite⇒ f( 4, 2, 3 )

f( 4, 4 ); // rewrite⇒ f( 4, 4, 3 )

f( 4, 4, 4 ); // rewrite⇒ f( 4, 4, 4 )

f( ?, 4, 4 ); // rewrite⇒ f( 1, 4, 4 )

f( 4, ?, 4 ); // rewrite⇒ f( 4, 2, 4 )

f( 4, 4, ? ); // rewrite⇒ f( 4, 4, 3 )

f( 4, ?, ? ); // rewrite⇒ f( 4, 2, 3 )

f( ?, 4, ? ); // rewrite⇒ f( 1, 4, 3 )

f( ?, ?, 4 ); // rewrite⇒ f( 1, 2, 4 )

f( ?, ?, ? ); // rewrite⇒ f( 1, 2, 3 )

8

where the ? selects the default value as the argument. Here the missing arguments are inserted from the default values9

in the parameter list. The compiler rewrites missing default values into explicit positional arguments. The advantages10

of default values are:11

• Routines with a large number of parameters are often very generalized, giving a programmer a number of12

different options on how a computation is performed. For many of these routines, there are standard or default13

settings that work for the majority of computations. Without default values for parameters, a programmer is14

forced to specify these common values all the time, resulting in long argument lists that are error prone.15

• When a routine’s interface is augmented with new parameters, it extends the interface providing generalizabil-16

ity16 (somewhat like the generalization provided by inheritance for classes). That is, all existing calls are still17

15Francez [15] proposed a further extension to the named-parameter passing style, which specifies what type of communication (by value, by refer-
ence, by name) the argument is passed to the routine.

16“It should be possible for the implementor of an abstraction to increase its generality. So long as the modified abstraction is a generalization of



17.2 Named (or Keyword) 37

valid, although the call must still be recompiled.1

The only disadvantage of default arguments is that unintentional omission of an argument may not result in a compiler-2

time error. Instead, a default value is used, which may not be the programmer’s intent.3

Default parameters may only appear in a prototype versus definition context:4

void f( int x, int y = 2, int z = 3 ); // prototype: allowed5

void f( int, int = 2, int = 3 ); // prototype: allowed6

void f( int x, int y = 2, int z = 3 ) {} // definition: disallowed7

The reason for this restriction is to allow separate compilation. Multiple prototypes with different default values is8

undefined.9

Default arguments and overloading (see Section 26, p. 65) are complementary. While in theory default arguments10

can be simulated with overloading, as in:11

default arguments overloading

void f( int x, int y = 2, int z = 3 ) {...} void f( int x, int y, int z ) {...}

void f( int x ) { f( x, 2, 3 ); }

void f( int x, int y ) { f( x, y, 3 ); }

12

the number of required overloaded routines is linear in the number of default values, which is unacceptable growth. In13

general, overloading is used over default parameters, if the body of the routine is significantly different. Furthermore,14

overloading cannot handle accessing default arguments in the middle of a positional list.15

f( 1, ?, 5 ); // rewrite⇒ f( 1, 2, 5 )16

17.2 Named (or Keyword)17

A named (keyword) parameter provides the ability to specify an argument to a routine call using the parameter name18

rather than the position of the parameter. For example, given the routine prototype:19

void f( int ?x, int ?y, int ?z );20

allowable calls are:21

f( ?x = 3, ?y = 4, ?z = 5 ); // rewrite⇒ f( 3, 4, 5 )22

f( ?y = 4, ?z = 5, ?x = 3 ); // rewrite⇒ f( 3, 4, 5 )23

f( ?z = 5, ?x = 3, ?y = 4 ); // rewrite⇒ f( 3, 4, 5 )24

f( ?x = 3, ?z = 5, ?y = 4 ); // rewrite⇒ f( 3, 4, 5 )25

Here the ordering of the the parameters and arguments is unimportant, and the names of the parameters are used to26

associate argument values with the corresponding parameters. The compiler rewrites a named call into a positional27

call. Note, the syntax ?x = 3 is necessary for the argument, because x = 3 has an existing meaning, i.e., assign 3 to x28

and pass the value of x. The advantages of named parameters are:29

• Remembering the names of the parameters may be easier than the order in the routine definition.30

• Parameter names provide documentation at the call site (assuming the names are descriptive).31

• Changes can be made to the order or number of parameters without affecting the call (although the call must32

still be recompiled).33

Named parameters may only appear in a prototype versus definition context:34

void f( int x, int ?y, int ?z ); // prototype: allowed35

void f( int ?x, int , int ?z ); // prototype: allowed36

void f( int x, int ?y, int ?z ) {} // definition: disallowed37

The reason for this restriction is to allow separate compilation. Multiple prototypes with different positional parameter38

names is an error.39

The named parameter is not part of type resolution; only the type of the expression assigned to the named parameter40

affects type resolution.41

int f( int ?i, int ?j );42

int f( int ?i, double ?j );43

the original, existing uses of the abstraction will not require change. It might be possible to modify an abstraction in a manner which is not a
generalization without affecting existing uses, but, without inspecting the modules in which the uses occur, this possibility cannot be determined.
This criterion precludes the addition of parameters, unless these parameters have default or inferred values that are valid for all possible existing
applications.” [8, p. 128]



38 19.2 Routine Nesting

f( ?j = 3, ?i = 4 ); // 1st f1

f( ?i = 7, ?j = 8.1 ); // 2nd f2

17.3 Mixed Default/Named3

Default and named parameters can be intermixed and named parameters can have a default value. For example, given4

the routine prototype:5

void f( int x, int y = 1, int ?z = 2 );6

allowable calls are:7

f( 3 ); // rewrite⇒ f( 3, 1, 2 )8

f( 3, 4 ); // rewrite⇒ f( 3, 4, 2 )9

f( 3, ?z = 5 ); // rewrite⇒ f( 3, 1, 5 )10

f( 3, 4, ?z = 5 ); // rewrite⇒ f( 3, 4, 5 )11

f( ?z = 5, 3 ); // rewrite⇒ f( 3, 1, 5 )12

f( 3, ?z = 5, 4 ); // rewrite⇒ f( 3, 4, 5 )13

Finally, the ellipse (“...”) parameter must appear after positional and named parameters in a routine prototype.14

void f( int i = 1, int ?j = 2, ... );15

C

A

named and default arguments are backwards compatible with C. C++ only supports default parameters; Ada16

supports both named and default parameters.17

18 Unnamed Structure Fields18

C requires each field of a structure to have a name, except for a bit field associated with a basic type, e.g.:19

struct {20

int f1; // named field21

int f2 : 4; // named field with bit field size22

int : 3; // unnamed field for basic type with bit field size23

int ; // disallowed, unnamed field24

int *; // disallowed, unnamed field25

int (*)( int ); // disallowed, unnamed field26

};27

This requirement is relaxed by making the field name optional for all field declarations; therefore, all the field decla-28

rations in the example are allowed. As for unnamed bit fields, an unnamed field is used for padding a structure to a29

particular size. A list of unnamed fields is also supported, e.g.:30

struct {31

int , , ; // 3 unnamed fields32

}33

19 Nesting34

Nesting of types and routines is useful for controlling name visibility (name hiding).35

19.1 Type Nesting36

C

A

allows type nesting, and type qualification of the nested types (see Figure 7), where as C hoists (refactors) nested37

types into the enclosing scope and has no type qualification. In the left example in C, types C, U and T are implicitly38

hoisted outside of type S into the containing block scope. In the right example in C

A

, the types are not hoisted and39

accessed using the field-selection operator “.” for type qualification, as does Java, rather than the C++ type-selection40

operator “::”.41

19.2 Routine Nesting42

While C

A

does not provide object programming by putting routines into structures, it does rely heavily on locally43

nested routines to redefine operations at or close to a call site. For example, the C quick-sort is wrapped into the44

following polymorphic C

A

routine:45



20 Tuple 39

C Type Nesting C Implicit Hoisting C

A

struct S {

enum C { R, G, B };

struct T {

union U { int i, j; };

enum C c;

short int i, j;

};

struct T t;

} s;

int fred() {

s.t.c = R;

struct T t = { R, 1, 2 };

enum C c;

union U u;

}

enum C { R, G, B };

union U { int i, j; };

struct T {

enum C c;

short int i, j;

};

struct S {

struct T t;

} s;

struct S {

enum C { R, G, B };

struct T {

union U { int i, j; };

enum C c;

short int i, j;

};

struct T t;

} s;

int fred() {

s.t.c = S.R; // type qualification

struct S.T t = { S.R, 1, 2 };

enum S.C c;

union S.T.U u;

}

Figure 7: Type Nesting / Qualification

forall( T | { int ?<?( T, T ); } )1

void qsort( const T * arr, size_t dimension );2

which can be used to sort in ascending and descending order by locally redefining the less-than operator into greater-3

than.4

const unsigned int size = 5;5

int ia[size];6

... // assign values to array ia7

qsort( ia, size ); // sort ascending order using builtin ?<?8

{9

int ?<?( int x, int y ) { return x > y; } // nested routine10

qsort( ia, size ); // sort descending order by local redefinition11

}12

Nested routines are not first-class, meaning a nested routine cannot be returned if it has references to variables in13

its enclosing blocks; the only exception is references to the external block of the translation unit, as these variables14

persist for the duration of the program. The following program in undefined in C

A

(and Indexcgcc)15

[* [int]( int )] foo() { // int (* foo())( int )16

int i = 7;17

int bar( int p ) {18

i += 1; // dependent on local variable19

sout | i;20

}21

return bar; // undefined because of local dependence22

}23

int main() {24

* [int]( int ) fp = foo(); // int (* fp)( int )25

sout | fp( 3 );26

}27

because28

Currently, there are no lambda expressions, i.e., unnamed routines because routine names are very important to29

properly select the correct routine.30

20 Tuple31

In C and C

A

, lists of elements appear in several contexts, such as the parameter list of a routine call.32

f( 2, x, 3 + i ); // element list33



40 20.1 Multiple-Return-Value Functions

A list of elements is called a tuple, and is different from a comma expression.1

20.1 Multiple-Return-Value Functions2

In C and most programming languages, functions return at most one value; however, many operations have multiple3

outcomes, some exceptional (see Section 10, p. 17). To emulate functions with multiple return values, aggregation4

and/or aliasing is used.5

In the former approach, a record type is created combining all of the return values. For example, consider C’s div6

function, which returns the quotient and remainder for a division of an integer value.7

typedef struct { int quot, rem; } div_t; // from include stdlib.h8

div_t div( int num, int den );9

div_t qr = div( 13, 5 ); // return quotient/remainder aggregate10

printf( "%d %d\n", qr.quot, qr.rem ); // print quotient/remainder11

This approach requires a name for the return type and fields, where naming is a common programming-language issue.12

That is, naming creates an association that must be managed when reading and writing code. While effective when13

used sparingly, this approach does not scale when functions need to return multiple combinations of types.14

In the latter approach, additional return values are passed as pointer parameters. A pointer parameter is assigned15

inside the routine to emulate a return. For example, consider C’s modf function, which returns the integral and fractional16

part of a floating value.17

double modf( double x, double * i ); // from include math.h18

double intp, frac = modf( 13.5, &intp ); // return integral and fractional components19

printf( "%g %g\n", intp, frac ); // print integral/fractional components20

This approach requires allocating storage for the return values, which complicates the call site with a sequence of21

variable declarations leading to the call. Also, while a disciplined use of const can give clues about whether a pointer22

parameter is used as an out parameter, it is not obvious from the routine signature whether the callee expects such a23

parameter to be initialized before the call. Furthermore, while many C routines that accept pointers are safe for a NULL24

argument, there are many C routines that are not null-safe. Finally, C does not provide a mechanism to state that a25

parameter is going to be used as an additional return value, which makes the job of ensuring that a value is returned26

more difficult for the compiler. Still, not every routine with multiple return values should be required to return an27

error code, and error codes are easily ignored, so this is not a satisfying solution. As with the previous approach, this28

technique can simulate multiple return values, but in practice it is verbose and error prone.29

C

A

allows functions to return multiple values by extending the function declaration syntax. Multiple return values30

are declared as a comma-separated list of types in square brackets in the same location that the return type appears in31

standard C function declarations.32

[ char, int, double ] f( ... );33

The ability to return multiple values from a function requires a new syntax for the return statement. For consistency,34

the return statement in C

A

accepts a comma-separated list of expressions in square brackets.35

return [ c, i, d ];36

The expression resolution ensures the correct form is used depending on the values being returned and the return type37

of the current function. A multiple-returning function with return type T can return any expression that is implicitly38

convertible to T.39

A common use of a function’s output is input to another function. C

A

allows this case, without any new syntax; a40

multiple-returning function can be used in any of the contexts where an expression is allowed. When a function call is41

passed as an argument to another call, the best match of actual arguments to formal parameters is evaluated given all42

possible expression interpretations in the current scope.43

void g( int, int ); // 144

void g( double, double ); // 245

g( div( 13, 5 ) ); // select 146

g( modf( 13.5 ) ); // select 247

In this case, there are two overloaded g routines. Both calls to g expect two arguments that are matched by the two48

return values from div and modf. respectively, which are fed directly to the first and second parameters of g. As well,49

both calls to g have exact type matches for the two different versions of g, so these exact matches are chosen. When50

type matches are not exact, conversions are used to find a best match.51



20.2 Expressions 41

The previous examples can be rewritten passing the multiple returned-values directly to the printf function call.1

[ int, int ] div( int x, int y ); // from include stdlib2

printf( "%d %d\n", div( 13, 5 ) ); // print quotient/remainder3

4

[ double, double ] modf( double x ); // from include math5

printf( "%g %g\n", modf( 13.5 ) ); // print integral/fractional components6

This approach provides the benefits of compile-time checking for appropriate return statements as in aggregation, but7

without the required verbosity of declaring a new named type.8

Finally, the addition of multiple-return-value functions necessitates a syntax for retaining the multiple values at the9

call-site versus their temporary existence during a call. The simplest mechanism for retaining a return value in C is10

variable assignment. By assigning the multiple return-values into multiple variables, the values can be retrieved later.11

As such, C

A

allows assigning multiple values from a function into multiple variables, using a square-bracketed list of12

lvalue expressions on the left side.13

int quot, rem;14

[ quot, rem ] = div( 13, 5 ); // assign multiple variables15

printf( "%d %d\n", quot, rem ); // print quotient/remainder16

Here, the multiple return-values are matched in much the same way as passing multiple return-values to multiple17

parameters in a call.18

20.2 Expressions19

Multiple-return-value functions provide C

A

with a new syntax for expressing a combination of expressions in the20

return statement and a combination of types in a function signature. These notions are generalized to provide C

A

with21

tuple expressions and tuple types. A tuple expression is an expression producing a fixed-size, ordered list of values of22

heterogeneous types. The type of a tuple expression is the tuple of the subexpression types, or a tuple type.23

In C

A

, a tuple expression is denoted by a comma-separated list of expressions enclosed in square brackets. For24

example, the expression [5, 'x', 10.5] has type [int, char, double]. The previous expression has 3 components. Each25

component in a tuple expression can be any C

A

expression, including another tuple expression. The order of evalu-26

ation of the components in a tuple expression is unspecified, to allow a compiler the greatest flexibility for program27

optimization. It is, however, guaranteed that each component of a tuple expression is evaluated for side-effects, even28

if the result is not used. Multiple-return-value functions can equivalently be called tuple-returning functions.29

20.3 Variables30

The previous call of div still requires the preallocation of multiple return-variables in a manner similar to the aliasing31

example. In C

A

, it is possible to overcome this restriction by declaring a tuple variable.32

[int, int] qr = div( 13, 5 ); // initialize tuple variable33

printf( "%d %d\n", qr ); // print quotient/remainder34

It is now possible to match the multiple return-values to a single variable, in much the same way as aggregation. As35

well, the components of the tuple value are passed as separate parameters to printf, allowing direct printing of tuple36

variables. One way to access the individual components of a tuple variable is with assignment.37

[ quot, rem ] = qr; // assign multiple variables38

In addition to variables of tuple type, it is also possible to have pointers to tuples, and arrays of tuples. Tuple39

types can be composed of any types, except for array types, since array assignment is disallowed, which makes tuple40

assignment difficult when a tuple contains an array.41

[ double, int ] di;42

[ double, int ] * pdi43

[ double, int ] adi[10];44

This examples declares a variable of type [double, int], a variable of type pointer to [double, int], and an array of ten45

[double, int].46



42 20.5 Flattening and Structuring

20.4 Indexing1

It is also possible to access a single component of a tuple-valued expression without creating temporary variables.2

Given a tuple-valued expression enp and a compile-time constant integer i where 0 ≤ i < n, where n is the number of3

components in e, e.i accesses the i th component of e, e.g.:4

[int, double] x;5

[char *, int] f();6

void g(double, int);7

[int, double] * p;8

9

int y = x.0; // access int component of x10

y = f().1; // access int component of f11

p->0 = 5; // access int component of tuple pointed-to by p12

g( x.1, x.0 ); // rearrange x to pass to g13

double z = [ x, f() ].0.1; // access second component of first component of tuple expression14

Tuple-index expressions can occur on any tuple-typed expression, including tuple-returning functions, square-bracketed15

tuple expressions, and other tuple-index expressions, provided the retrieved component is also a tuple. This feature16

was proposed for K-W C but never implemented [31, p. 45].17

20.5 Flattening and Structuring18

As evident in previous examples, tuples in C

A

do not have a rigid structure. In function call contexts, tuples support19

implicit flattening and restructuring conversions. Tuple flattening recursively expands a tuple into the list of its basic20

components. Tuple structuring packages a list of expressions into a value of tuple type.21

int f(int, int);22

int g([int, int]);23

int h(int, [int, int]);24

[int, int] x;25

int y;26

27

f(x); // flatten28

g(y, 10); // structure29

h(x, y); // flatten & structure30

In C

A

, each of these calls is valid. In the call to f, x is implicitly flattened so that the components of x are passed as the31

two arguments to f. For the call to g, the values y and 10 are structured into a single argument of type [int, int] to match32

the type of the parameter of g. Finally, in the call to h, x is flattened to yield an argument list of length 3, of which33

the first component of x is passed as the first parameter of h, and the second component of x and y are structured into34

the second argument of type [int, int]. The flexible structure of tuples permits a simple and expressive function-call35

syntax to work seamlessly with both single- and multiple-return-value functions, and with any number of arguments36

of arbitrarily complex structure.37

In K-W C [5, 31], there were 4 tuple coercions: opening, closing, flattening, and structuring. Opening coerces a38

tuple value into a tuple of values, while closing converts a tuple of values into a single tuple value. Flattening coerces a39

nested tuple into a flat tuple, i.e., it takes a tuple with tuple components and expands it into a tuple with only non-tuple40

components. Structuring moves in the opposite direction, i.e., it takes a flat tuple value and provides structure by41

introducing nested tuple components.42

In C

A

, the design has been simplified to require only the two conversions previously described, which trigger43

only in function call and return situations. This simplification is a primary contribution of this thesis to the design44

of tuples in C

A

. Specifically, the expression resolution algorithm examines all of the possible alternatives for an45

expression to determine the best match. In resolving a function call expression, each combination of function value46

and list of argument alternatives is examined. Given a particular argument list and function value, the list of argument47

alternatives is flattened to produce a list of non-tuple valued expressions. Then the flattened list of expressions is48

compared with each value in the function’s parameter list. If the parameter’s type is not a tuple type, then the current49

argument value is unified with the parameter type, and on success the next argument and parameter are examined. If50

the parameter’s type is a tuple type, then the structuring conversion takes effect, recursively applying the parameter51

matching algorithm using the tuple’s component types as the parameter list types. Assuming a successful unification,52

eventually the algorithm gets to the end of the tuple type, which causes all of the matching expressions to be consumed53



20.6 Assignment 43

and structured into a tuple expression. For example, in1

int f(int, [double, int]);2

f([5, 10.2], 4);3

There is only a single definition of f, and 3 arguments with only single interpretations. First, the argument alternative4

list [5, 10.2], 4 is flattened to produce the argument list 5, 10.2, 4. Next, the parameter matching algorithm begins,5

with P = int and A = int, which unifies exactly. Moving to the next parameter and argument, P = [double, int] and6

A = double. This time, the parameter is a tuple type, so the algorithm applies recursively with P′ = double and7

A = double, which unifies exactly. Then P′ = int and A = double, which again unifies exactly. At this point, the end8

of P′ has been reached, so the arguments 10.2, 4 are structured into the tuple expression [10.2, 4]. Finally, the end of9

the parameter list P has also been reached, so the final expression is f(5, [10.2, 4]).10

20.6 Assignment11

An assignment where the left side of the assignment operator has a tuple type is called tuple assignment. There are12

two kinds of tuple assignment depending on whether the right side of the assignment operator has a non-tuple or tuple13

type, called mass and multiple assignment, respectively.14

int x;15

double y;16

[int, double] z;17

[y, x] = 3.14; // mass assignment18

[x, y] = z; // multiple assignment19

z = 10; // mass assignment20

z = [x, y]; // multiple assignment21

Let Li for i in [0,n) represent each component of the flattened left side, Ri represent each component of the flattened22

right side of a multiple assignment, and R represent the right side of a mass assignment.23

For a multiple assignment to be valid, both tuples must have the same number of elements when flattened. For24

example, the following is invalid because the number of components on the left does not match the number of compo-25

nents on the right.26

[ int, int ] x, y, z;27

[ x, y ] = z; // multiple assignment, invalid 4 != 228

Multiple assignment assigns Ri to Li for each i. That is, ?=?(&$L_i$, $R_i$) must be a well-typed expression. In the29

previous example, [x, y] = z, z is flattened into z.0, z.1, and the assignments x = z.0 and y = z.1 happen.30

A mass assignment assigns the value R to each Li. For a mass assignment to be valid, ?=?(&$L_i$, $R$) must be31

a well-typed expression. These semantics differ from C cascading assignment (e.g., a=b=c) in that conversions are32

applied to R in each individual assignment, which prevents data loss from the chain of conversions that can happen33

during a cascading assignment. For example, [y, x] = 3.14 performs the assignments y = 3.14 and x = 3.14, which results34

in the value 3.14 in y and the value 3 in x. On the other hand, the C cascading assignment y = x = 3.14 performs the35

assignments x = 3.14 and y = x, which results in the value 3 in x, and as a result the value 3 in y as well.36

Both kinds of tuple assignment have parallel semantics, such that each value on the left side and right side is37

evaluated before any assignments occur. As a result, it is possible to swap the values in two variables without explicitly38

creating any temporary variables or calling a function.39

int x = 10, y = 20;40

[ x, y ] = [ y, x ];41

After executing this code, x has the value 20 and y has the value 10.42

In C

A

, tuple assignment is an expression where the result type is the type of the left side of the assignment, as43

in normal assignment. That is, a tuple assignment produces the value of the left-hand side after assignment. These44

semantics allow cascading tuple assignment to work out naturally in any context where a tuple is permitted. These45

semantics are a change from the original tuple design in K-W C [31], wherein tuple assignment was a statement that46

allows cascading assignments as a special case. Restricting tuple assignment to statements was an attempt to to fix47

what was seen as a problem with side-effects, wherein assignment can be used in many different locations, such as in48

function-call argument position. While permitting assignment as an expression does introduce the potential for subtle49

complexities, it is impossible to remove assignment expressions from C

A

without affecting backwards compatibility.50

Furthermore, there are situations where permitting assignment as an expression improves readability by keeping code51

succinct and reducing repetition, and complicating the definition of tuple assignment puts a greater cognitive burden52



44 20.8 Member-Access Expression

on the user. In another language, tuple assignment as a statement could be reasonable, but it would be inconsistent1

for tuple assignment to be the only kind of assignment that is not an expression. In addition, K-W C permits the2

compiler to optimize tuple assignment as a block copy, since it does not support user-defined assignment operators.3

This optimization could be implemented in C

A

, but it requires the compiler to verify that the selected assignment4

operator is trivial.5

The following example shows multiple, mass, and cascading assignment used in one expression6

int a, b;7

double c, d;8

[ void ] f( [ int, int ] );9

f( [ c, a ] = [ b, d ] = 1.5 ); // assignments in parameter list10

The tuple expression begins with a mass assignment of 1.5 into [b, d], which assigns 1.5 into b, which is truncated to11

1, and 1.5 into d, producing the tuple [1, 1.5] as a result. That tuple is used as the right side of the multiple assignment12

(i.e., [c, a] = [1, 1.5]) that assigns 1 into c and 1.5 into a, which is truncated to 1, producing the result [1, 1]. Finally, the13

tuple [1, 1] is used as an expression in the call to f.14

20.7 Construction15

Tuple construction and destruction follow the same rules and semantics as tuple assignment, except that in the case16

where there is no right side, the default constructor or destructor is called on each component of the tuple. As con-17

structors and destructors did not exist in previous versions of C

A

or in K-W C, this is a primary contribution of this18

thesis to the design of tuples.19

struct S;20

void ?{}(S *); // (1)21

void ?{}(S *, int); // (2)22

void ?{}(S * double); // (3)23

void ?{}(S *, S); // (4)24

25

[S, S] x = [3, 6.28]; // uses (2), (3), specialized constructors26

[S, S] y; // uses (1), (1), default constructor27

[S, S] z = x.0; // uses (4), (4), copy constructor28

In this example, x is initialized by the multiple constructor calls ?{}(&x.0, 3) and ?{}(&x.1, 6.28), while y is initialized29

by two default constructor calls ?{}(&y.0) and ?{}(&y.1). z is initialized by mass copy constructor calls ?{}(&z.0, x.0) and30

?{}(&z.1, x.0). Finally, x, y, and z are destructed, i.e., the calls ∧?{}(&x.0), ∧?{}(&x.1), ∧?{}(&y.0), ∧?{}(&y.1), ∧?{}(&z.0),31

and ∧?{}(&z.1).32

It is possible to define constructors and assignment functions for tuple types that provide new semantics, if the33

existing semantics do not fit the needs of an application. For example, the function void ?{}([T, U] *, S); can be defined34

to allow a tuple variable to be constructed from a value of type S.35

struct S { int x; double y; };36

void ?{}([int, double] * this, S s) {37

this->0 = s.x;38

this->1 = s.y;39

}40

Due to the structure of generated constructors, it is possible to pass a tuple to a generated constructor for a type with a41

member prefix that matches the type of the tuple. For example,42

struct S { int x; double y; int z };43

[int, double] t;44

S s = t;45

The initialization of s with t works by default because t is flattened into its components, which satisfies the generated46

field constructor ?{}(S *, int, double) to initialize the first two values.47

20.8 Member-Access Expression48

Tuples may be used to select multiple fields of a record by field name. The result is a single tuple-valued expression49

whose type is the tuple of the types of the members. For example,50

struct S { char x; int y; double z; } s;51



20.9 Casting 45

s.[x, y, z];1

Here, the type of s.[ x, y, z ] is [ char, int, double ]. A member tuple expression has the form e.[x, y, z]; where e is an2

expression with type T, where T supports member access expressions, and x, y, z are all members of T with types3

T$_x$, T$_y$, and T$_z$ respectively. Then the type of e.[x, y, z] is [T$_x$, T$_y$, T$_z$].4

A member-access tuple may be used anywhere a tuple can be used, e.g.:5

s.[ y, z, x ] = [ 3, 3.2, 'x' ]; // equivalent to s.x = ’x’, s.y = 3, s.z = 3.26

f( s.[ y, z ] ); // equivalent to f( s.y, s.z )7

Note, the fields appearing in a record-field tuple may be specified in any order; also, it is unnecessary to specify all the8

fields of a struct in a multiple record-field tuple.9

Since tuple-index expressions are a form of member-access expression, it is possible to use tuple-index expressions10

in conjunction with member-access expressions to restructure a tuple (e.g., rearrange components, drop components,11

duplicate components, etc.).12

[ int, int, long, double ] x;13

void f( double, long );14

15

f( x.[ 0, 3 ] ); // f( x.0, x.3 )16

x.[ 0, 1 ] = x.[ 1, 0 ]; // [ x.0, x.1 ] = [ x.1, x.0 ]17

[ long, int, long ] y = x.[ 2, 0, 2 ];18

It is possible for a member tuple expression to contain other member access expressions, e.g.:19

struct A { double i; int j; };20

struct B { int * k; short l; };21

struct C { int x; A y; B z; } v;22

v.[ x, y.[ i, j ], z.k ];23

This expression is equivalent to [ v.x, [ v.y.i, v.y.j ], v.z.k ]. That is, the aggregate expression is effectively distributed24

across the tuple allowing simple and easy access to multiple components in an aggregate without repetition. It is25

guaranteed that the aggregate expression to the left of the . in a member tuple expression is evaluated exactly once. As26

such, it is safe to use member tuple expressions on the result of a function with side-effects.27

[ int, float, double ] f();28

[ double, float ] x = f().[ 2, 1 ]; // f() called once29

In K-W C, member tuple expressions are known as record field tuples [31]. Since C

A

permits these tuple-access30

expressions using structures, unions, and tuples, member tuple expression or field tuple expression is more appropriate.31

20.9 Casting32

Casting is a mechanism to explicitly change the type and representation of a value. If the type and representation are33

changed, the cast is a conversion; if only the type is changed but not the value representation, the cast is a coercion.34

For example, in:35

int i, *ip;36

double d;37

d = (double)i; // conversion38

ip = (int *)d; // coercion39

the conversion cast implicitly runs code that transforms an integer representation into the best-effort floating-point40

representation. Another conversion case exists in object-oriented programming-languages to walk an inheritence41

hierarchy looking for specific types along the path. The coercion cast lies about the representation of the value as42

the integer point is actually pointing at a floating-point value; indirect operations through ip are as odds with direct43

operations on d. In general, coercion casts are only necessary for systems programming, like building a memory44

allocator, where raw storage is typed and returned for use by the language or the runtime system to access storage in45

special ways.46

For coercion casts, there are often fine-grain variations to precisely expalin how the storage is to be typed. C++ and47

C

A

have a number specialized casts., there are four types of explicit casting operators.48

1. dynamic_cast Used for conversion of polymorphic types.49

2. static_cast Used for conversion of nonpolymorphic types.50

3. const_cast Used to remove the type qualifiers and possibly attributes.51



46 20.9 Casting

4. reinterpret_cast Used for simple reinterpretation of bits.1

'(' type_no_function ')' cast_expression2

'(' aggregate_control '&' ')' cast_expression // CFA3

'(' aggregate_control '*' ')' cast_expression // CFA4

'(' VIRTUAL ')' cast_expression // CFA5

'(' VIRTUAL type_no_function ')' cast_expression // CFA6

'(' RETURN type_no_function ')' cast_expression // CFA (ASCRIPTION)7

'(' COERCE type_no_function ')' cast_expression // CFA (COERCION)8

'(' qualifier_cast_ list ')' cast_expression // CFA, (modify CVs of cast_expression)9

Specialized Casts10

There is some use in Cforall for cast operators with semantics other than the standard C cast. To make these11

alternate casts look like the familiar C cast, this proposal follows the example of the virtual proposal’s virtual cast12

‘(virtual Foo)x‘ and uses an added (pseudo-)keyword inside the cast parens.13

C (Conversion) Cast14

The standard C cast performs conversions, transformations between types which may make a new object with a15

different in-memory representation. Cforall maintains these semantics in a backward-compatible way while account-16

ing for name overloading by choosing the lowest-cost interpretation of the argument expression which is convertable17

to the target type, breaking ties by conversion cost.18

The C cast must be maintained for backward-compatibility, and developing a second cast operator with identical19

semantics seems an undesirable multiplication of language features, but ‘(convert Foo)‘ or ‘(to Foo)‘ would be reason-20

able options for a keyword. An alternate semantics for a Cforall-specific conversion cast would be to choose the cast21

interpretation with the lowest sum of conversion cost and interpretation cost, which aligns better with Cforall function22

call resolution algorithm.23

Ascription Cast24

Using casts in Cforall for type ascription ("select the interpretation of this type") works by the conversion-cost25

tiebreaker behaviour of the cast operator. However, the ascription interpretation of casts is prioritized less than the26

conversion interpretation of casts, sometimes resulting in some surprising results, as in the following example:27

int f(int); // f128

int f(double); // f229

int g(int); // g130

double g(long); // g231

32

f((double)42); // selects f2 by cast on argument33

(double)g(42); // does NOT select g2, argument conversion cost results in g134

An ascription cast which reversed the priorities of the C cast would be useful for selecting expressions based on35

their return type; a reversal of the priorities of the standard C cast would work for this (that is, select the lowest-36

cost conversion, breaking ties based on argument cost). A plausible stricter semantics would be to select the cheapest37

interpretation with a zero-cost conversion to the target type, reporting a compiler error otherwise (this semantics would38

make ascription a solely compile-time phenomenon, rather than relying on possible runtime conversions). A resonable39

keyword would be ‘(as Foo)‘, which is short, evocative, and echos "ascription"; ‘(return Foo)‘ would not introduce40

new keywords, and speaks to its use in return-type selection, as in the following corrected version of the example41

above:42

(as double)g(42); // selects g2, as expected (under either presented ascription semantics)43

Coercion Cast44

Some of the explict conversions in C are defined to be a coercions (reinterpret the bits of this value as another45

type). Use of coercions often relies on non-standard implementation details of the provided environment, and as such46

is discouraged, but is sometimes necessary. Since all explicit pointer casts in C are coercions, any lvalue x in C/Cforall47

can be coerced with the pattern *(Foo*)&x, but this is complex and doesn’t extend to rvalues.48

int i = 5;49

double d = *(double*)&i; // value coercion50

printf( "%g %g %x\n", d, *(double *)&i, *(int *)&d );51

52

int i = 5; // pointer coercion53

double d = *(double*)&i; // value coercion54



20.9 Casting 47

A dedicated coercion cast would solve these issues; (reinterpret Foo) (from C++), (transmute Foo) (from Rust), or1

(coerce Foo) would be reasonable keywords.2

Qualifier Cast3

A more restricted (and thus safer) form of coercion is modifiying the qualifiers of a type; C++ has const_cast for4

this purpose, and a similar feature would be useful for Cforall. With regard to syntax, (requalify const Foo)/(requalify Foo)5

to add/strip const would echo C++, but given that the vast majority of uses are stripping const-qualfiers, (non const)6

would be shorter, clearer, easily searchable, and not require the programmer to exactly match the argument type. In7

this syntax, coercion casts could be used to add qualifiers, or another cast type (say (with const)) could be introduced8

to add qualfiers.9

Virtual Cast see virtual.txt; semantics equivalent to C++ dynamic cast10

In C

A

, the cast operator has a secondary use, which is type ascription, since it forces the expression resolution11

algorithm to choose the lowest cost conversion to the target type. That is, a cast can be used to select the type of an12

expression when it is ambiguous, as in the call to an overloaded function.13

int f(); // (1)14

double f(); // (2)15

16

f(); // ambiguous - (1),(2) both equally viable17

(int)f(); // choose (2)18

Since casting is a fundamental operation in C

A

, casts need to be given a meaningful interpretation in the context of19

tuples. Taking a look at standard C provides some guidance with respect to the way casts should work with tuples.20

1 int f();21

2 void g();22

223

3 (void)f(); // valid, ignore results24

4 (int)g(); // invalid, void cannot be converted to int25

426

5 struct A { int x; };27

6 (struct A)f(); // invalid, int cannot be converted to A28

In C, line 4 is a valid cast, which calls f and discards its result. On the other hand, line 5 is invalid, because g does not29

produce a result, so requesting an int to materialize from nothing is nonsensical. Finally, line 8 is also invalid, because30

in C casts only provide conversion between scalar types [21, p. 91]. For consistency, this implies that any case wherein31

the number of components increases as a result of the cast is invalid, while casts that have the same or fewer number32

of components may be valid.33

Formally, a cast to tuple type is valid when Tn ≤ Sm, where Tn is the number of components in the target type and34

Sm is the number of components in the source type, and for each i in [0,n), Si can be cast to Ti. Excess elements (S j35

for all j in [n,m)) are evaluated, but their values are discarded so that they are not included in the result expression.36

This discarding naturally follows the way that a cast to void works in C.37

For example,38

[int, int, int] f();39

[int, [int, int], int] g();40

41

([int, double])f(); // (1) valid42

([int, int, int])g(); // (2) valid43

([void, [int, int]])g(); // (3) valid44

([int, int, int, int])g(); // (4) invalid45

([int, [int, int, int]])g(); // (5) invalid46

(1) discards the last element of the return value and converts the second element to type double. Since int is47

effectively a 1-element tuple, (2) discards the second component of the second element of the return value of g. If g48

is free of side effects, this is equivalent to [(int)(g().0), (int)(g().1.0), (int)(g().2)]. Since void is effectively a 0-element49

tuple, (3) discards the first and third return values, which is effectively equivalent to [(int)(g().1.0), (int)(g().1.1)]). if casts50

become function calls, what would they look like? would need a way to specify the target type, which seems awkward.51

Also, C++ basically only has this because classes are closed to extension, while we don’t have that problem (can have52

floating constructors for any type). Note that a cast is not a function call in C

A

, so flattening and structuring conversions53

do not occur for cast expressions. As such, (4) is invalid because the cast target type contains 4 components, while the54



48 20.10 Polymorphism

source type contains only 3. Similarly, (5) is invalid because the cast ([int, int, int])(g().1) is invalid. That is, it is invalid1

to cast [int, int] to [int, int, int].2

20.10 Polymorphism3

Due to the implicit flattening and structuring conversions involved in argument passing, object and opaque param-4

eters are restricted to matching only with non-tuple types. The integration of polymorphism, type assertions, and5

monomorphic specialization of tuple-assertions are a primary contribution of this thesis to the design of tuples.6

forall(T, U &)7

void f(T x, U * y);8

9

f([5, "hello"]);10

In this example, [5, "hello"] is flattened, so that the argument list appears as 5, "hello". The argument matching11

algorithm binds T to int and U to const char, and calls the function as normal.12

Tuples can contain polymorphic types. For example, a plus operator can be written to add two triples of a type13

together.14

forall(T | { T ?+?(T, T); })15

[T, T, T] ?+?([T, T, T] x, [T, T, T] y) {16

return [x.0+y.0, x.1+y.1, x.2+y.2];17

}18

[int, int, int] x;19

int i1, i2, i3;20

[i1, i2, i3] = x + ([10, 20, 30]);21

Note that due to the implicit tuple conversions, this function is not restricted to the addition of two triples. A call to22

this plus operator type checks as long as a total of 6 non-tuple arguments are passed after flattening, and all of the23

arguments have a common type that can bind to T, with a pairwise ?+? over T. For example, these expressions also24

succeed and produce the same value.25

([x.0, x.1]) + ([x.2, 10, 20, 30]); // x + ([10, 20, 30])26

x.0 + ([x.1, x.2, 10, 20, 30]); // x + ([10, 20, 30])27

This presents a potential problem if structure is important, as these three expressions look like they should have28

different meanings. Furthermore, these calls can be made ambiguous by introducing seemingly different functions.29

forall(T | { T ?+?(T, T); })30

[T, T, T] ?+?([T, T] x, [T, T, T, T]);31

forall(T | { T ?+?(T, T); })32

[T, T, T] ?+?(T x, [T, T, T, T, T]);33

It is also important to note that these calls could be disambiguated if the function return types were different, as they34

likely would be for a reasonable implementation of ?+?, since the return type is used in overload resolution. Still,35

these semantics are a deficiency of the current argument matching algorithm, and depending on the function, differing36

return values may not always be appropriate. These issues could be rectified by applying an appropriate conversion37

cost to the structuring and flattening conversions, which are currently 0-cost conversions in the expression resolver.38

Care would be needed in this case to ensure that exact matches do not incur such a cost.39

void f([int, int], int, int);40

41

f([0, 0], 0, 0); // no cost42

f(0, 0, 0, 0); // cost for structuring43

f([0, 0,], [0, 0]); // cost for flattening44

f([0, 0, 0], 0); // cost for flattening and structuring45

Until this point, it has been assumed that assertion arguments must match the parameter type exactly, modulo46

polymorphic specialization (i.e., no implicit conversions are applied to assertion arguments). This decision presents a47

conflict with the flexibility of tuples.48

20.10.1 Assertion Inference49

int f([int, double], double);50

forall(T, U | { T f(T, U, U); })51



21 Tuples 49

void g(T, U);1

g(5, 10.21);2

If assertion arguments must match exactly, then the call to g cannot be resolved, since the expected type of f is flat,3

while the only f in scope requires a tuple type. Since tuples are fluid, this requirement reduces the usability of tuples4

in polymorphic code. To ease this pain point, function parameter and return lists are flattened for the purposes of type5

unification, which allows the previous example to pass expression resolution.6

This relaxation is made possible by extending the existing thunk generation scheme, as described by Bilson [2].7

Now, whenever a candidate’s parameter structure does not exactly match the formal parameter’s structure, a thunk is8

generated to specialize calls to the actual function.9

int _thunk(int _p0, double _p1, double _p2) {10

return f([_p0, _p1], _p2);11

}12

Essentially, this provides flattening and structuring conversions to inferred functions, improving the compatibility of13

tuples and polymorphism.14

21 Tuples15

In C and C

A

, lists of elements appear in several contexts, such as the parameter list for a routine call. (More contexts16

are added shortly.) A list of such elements is called a lexical list. The general syntax of a lexical list is:17

[ exprlist ]18

where exprlist is a list of one or more expressions separated by commas. The brackets, [], allow differentiating between19

lexical lists and expressions containing the C comma operator. The following are examples of lexical lists:20

[ x, y, z ]21

[ 2 ]22

[ v + w, x * y, 3.14159, f() ]23

Tuples are permitted to contain sub-tuples (i.e., nesting), such as [ [ 14, 21 ], 9 ], which is a 2-element tuple whose first24

element is itself a tuple. Note, a tuple is not a record (structure); a record denotes a single value with substructure,25

whereas a tuple is multiple values with no substructure (see flattening coercion in Section 20.5, p. 42). In essence,26

tuples are largely a compile time phenomenon, having little or no runtime presence.27

Tuples can be organized into compile-time tuple variables; these variables are of tuple type. Tuple variables and28

types can be used anywhere lists of conventional variables and types can be used. The general syntax of a tuple type29

is:30

[ typelist ]31

where typelist is a list of one or more legal C

A

or C type specifications separated by commas, which may include other32

tuple type specifications. Examples of tuple types include:33

[ unsigned int, char ]34

[ double, double, double ]35

[ * int, int * ] // mix of CFA and ANSI36

[ * [ 5 ] int, * * char, * [ [ int, int ] ] (int, int) ]37

Like tuples, tuple types may be nested, such as [ [ int, int ], int ], which is a 2-element tuple type whose first element is38

itself a tuple type.39

Examples of declarations using tuple types are:40

[ int, int ] x; // 2 element tuple, each element of type int41

* [ char, char ] y; // pointer to a 2 element tuple42

[ [ int, int ] ] z ([ int, int ]);43

The last example declares an external routine that expects a 2 element tuple as an input parameter and returns a 244

element tuple as its result.45

As mentioned, tuples can appear in contexts requiring a list of value, such as an argument list of a routine call.46

In unambiguous situations, the tuple brackets may be omitted, e.g., a tuple that appears as an argument may have its47

square brackets omitted for convenience; therefore, the following routine invocations are equivalent:48

f( [ 1, x+2, fred() ] );49

f( 1, x+2, fred() );50



50 21.1 Tuple Coercions

Also, a tuple or a tuple variable may be used to supply all or part of an argument list for a routine expecting multiple1

input parameters or for a routine expecting a tuple as an input parameter. For example, the following are all legal:2

[ int, int ] w1;3

[ int, int, int ] w2;4

[ void ] f (int, int, int); // three input parameters of type int5

[ void ] g ([ int, int, int ]); // 3 element tuple as input6

f( [ 1, 2, 3 ] );7

f( w1, 3 );8

f( 1, w1 );9

f( w2 );10

g( [ 1, 2, 3 ] );11

g( w1, 3 );12

g( 1, w1 );13

g( w2 );14

Note, in all cases 3 arguments are supplied even though the syntax may appear to supply less than 3. As mentioned, a15

tuple does not have structure like a record; a tuple is simply converted into a list of components.16

✷ The present implementation of C

A

does not support nested routine calls when the inner routine returns multiple17

values; i.e., a statement such as g( f() ) is not supported. Using a temporary variable to store the results of the inner18

routine and then passing this variable to the outer routine works, however. ✷19

A tuple can contain a C comma expression, provided the expression containing the comma operator is enclosed in20

parentheses. For instance, the following tuples are equivalent:21

[ 1, 3, 5 ]22

[ 1, (2, 3), 5 ]23

The second element of the second tuple is the expression (2, 3), which yields the result 3. This requirement is the same24

as for comma expressions in argument lists.25

Type qualifiers, i.e., const and volatile, may modify a tuple type. The meaning is to distribute the qualifier across26

all of the types in the tuple, e.g.:27

const volatile [ int, float, const int ] x;28

is equivalent to:29

[ const volatile int, const volatile float, const volatile int ] x;30

Declaration qualifiers can only appear at the start of a C

A

tuple declaration4, e.g.:31

extern [ int, int ] w1;32

static [ int, int, int ] w2;33

✷ Unfortunately, C’s syntax for subscripts precluded treating them as tuples. The C subscript list has the form34

[i][j]... and not [i, j, ...]. Therefore, there is no syntactic way for a routine returning multiple values to specify the35

different subscript values, e.g., f[ g() ] always means a single subscript value because there is only one set of36

brackets. Fixing this requires a major change to C because the syntactic form M[i, j, k] already has a particular37

meaning: i, j, k is a comma expression. ✷38

21.1 Tuple Coercions39

There are four coercions that can be performed on tuples and tuple variables: closing, opening, flattening and struc-40

turing. In addition, the coercion of dereferencing can be performed on a tuple variable to yield its value(s), as for41

other variables. A closing coercion takes a set of values and converts it into a tuple value, which is a contiguous set of42

values, as in:43

[ int, int, int, int ] w;44

w = [ 1, 2, 3, 4 ];45

First the right-hand tuple is closed into a tuple value and then the tuple value is assigned.46

An opening coercion is the opposite of closing; a tuple value is converted into a tuple of values, as in:47

[ a, b, c, d ] = w48

w is implicitly opened to yield a tuple of four values, which are then assigned individually.49



21.2 Mass Assignment 51

A flattening coercion coerces a nested tuple, i.e., a tuple with one or more components, which are themselves1

tuples, into a flattened tuple, which is a tuple whose components are not tuples, as in:2

[ a, b, c, d ] = [ 1, [ 2, 3 ], 4 ];3

First the right-hand tuple is flattened and then the values are assigned individually. Flattening is also performed on4

tuple types. For example, the type [ int, [ int, int ], int ] can be coerced, using flattening, into the type [ int, int, int, int ].5

A structuring coercion is the opposite of flattening; a tuple is structured into a more complex nested tuple. For6

example, structuring the tuple [ 1, 2, 3, 4 ] into the tuple [ 1, [ 2, 3 ], 4 ] or the tuple type [ int, int, int, int ] into the tuple7

type [ int, [ int, int ], int ]. In the following example, the last assignment illustrates all the tuple coercions:8

[ int, int, int, int ] w = [ 1, 2, 3, 4 ];9

int x = 5;10

[ x, w ] = [ w, x ]; // all four tuple coercions11

Starting on the right-hand tuple in the last assignment statement, w is opened, producing a tuple of four values;12

therefore, the right-hand tuple is now the tuple [ [ 1, 2, 3, 4 ], 5 ]. This tuple is then flattened, yielding [ 1, 2, 3, 4, 5 ],13

which is structured into [ 1, [ 2, 3, 4, 5 ] ] to match the tuple type of the left-hand side. The tuple [ 2, 3, 4, 5 ] is then14

closed to create a tuple value. Finally, x is assigned 1 and w is assigned the tuple value using multiple assignment (see15

Section 20.6, p. 43).16

✷ A possible additional language extension is to use the structuring coercion for tuples to initialize a complex17

record with a tuple. ✷18

21.2 Mass Assignment19

C

A

permits assignment to several variables at once using mass assignment [25]. Mass assignment has the following20

form:21

[ lvalue, ... , lvalue ] = expr ;22

The left-hand side is a tuple of lvalues, which is a list of expressions each yielding an address, i.e., any data object that23

can appear on the left-hand side of a conventional assignment statement. expr is any standard arithmetic expression.24

Clearly, the types of the entities being assigned must be type compatible with the value of the expression.25

Mass assignment has parallel semantics, e.g., the statement:26

[ x, y, z ] = 1.5;27

is equivalent to:28

x = 1.5; y = 1.5; z = 1.5;29

This semantics is not the same as the following in C:30

x = y = z = 1.5;31

as conversions between intermediate assignments may lose information. A more complex example is:32

[ i, y[i], z ] = a + b;33

which is equivalent to:34

t = a + b;35

a1 = &i; a2 = &y[i]; a3 = &z;36

*a1 = t; *a2 = t; *a3 = t;37

The temporary t is necessary to store the value of the expression to eliminate conversion issues. The temporaries for38

the addresses are needed so that locations on the left-hand side do not change as the values are assigned. In this case,39

y[i] uses the previous value of i and not the new value set at the beginning of the mass assignment.40

21.3 Multiple Assignment41

C

A

also supports the assignment of several values at once, known as multiple assignment [25, 16]. Multiple assignment42

has the following form:43

[ lvalue, ... , lvalue ] = [ expr , ... , expr ];44

The left-hand side is a tuple of lvalues, and the right-hand side is a tuple of exprs. Each expr appearing on the right-hand45

side of a multiple assignment statement is assigned to the corresponding lvalues on the left-hand side of the statement46

using parallel semantics for each assignment. An example of multiple assignment is:47



52 22.1 Basic I/O

[ x, y, z ] = [ 1, 2, 3 ];1

Here, the values 1, 2 and 3 are assigned, respectively, to the variables x, y and z. A more complex example is:2

[ i, y[ i ], z ] = [ 1, i, a + b ];3

Here, the values 1, i and a + b are assigned to the variables i, y[i] and z, respectively. Note, the parallel semantics of4

multiple assignment ensures:5

[ x, y ] = [ y, x ];6

correctly interchanges (swaps) the values stored in x and y. The following cases are errors:7

[ a, b, c ] = [ 1, 2, 3, 4 ];8

[ a, b, c ] = [ 1, 2 ];9

because the number of entities in the left-hand tuple is unequal with the right-hand tuple.10

As for all tuple contexts in C, side effects should not be used because C does not define an ordering for the11

evaluation of the elements of a tuple; both these examples produce indeterminate results:12

f( x++, x++ ); // C routine call with side effects in arguments13

[ v1, v2 ] = [ x++, x++ ]; // side effects in right-hand side of multiple assignment14

21.4 Cascade Assignment15

As in C, C

A

mass and multiple assignments can be cascaded, producing cascade assignment. Cascade assignment has16

the following form:17

tuple = tuple = ... = tuple;18

and it has the same parallel semantics as for mass and multiple assignment. Some examples of cascade assignment19

are:20

x1 = y1 = x2 = y2 = 0;21

[ x1, y1 ] = [ x2, y2 ] = [ x3, y3 ];22

[ x1, y1 ] = [ x2, y2 ] = 0;23

[ x1, y1 ] = z = 0;24

As in C, the rightmost assignment is performed first, i.e., assignment parses right to left.25

22 Stream I/O Library26

The goal of C

A

stream input/output (I/O) is to simplify the common cases, while fully supporting polymorphism27

and user defined types in a consistent way. Stream I/O can be implicitly or explicitly formatted. Implicit formatting28

means C

A

selects an I/O format for values that matches a variable’s type. Explicit formatting means additional I/O29

information is specified to control how a value is interpreted.30

C

A

formatting incorporates ideas from C printf, C++ stream manipulators, and Python implicit spacing and newline.31

Specifically:32

• printf/Python format codes are dense, making them difficult to read and remember. C

A

/C++ format manipulators33

are named, making them easier to read and remember.34

• printf/Python separate format codes from associated variables, making it difficult to match codes with variables.35

C

A

/C++ co-locate codes with associated variables, where C

A

has the tighter binding.36

• Format manipulators in printf/Python/C

A

have local effect, whereas C++ have global effect, except setw. Hence,37

it is common C++ programming practice to toggle manipulators on and then back to the default to prevent38

downstream side-effects. Without this programming style, errors occur when moving prints, as manipulator39

effects incorrectly flow into the new location. Furthermore, to guarantee no side-effects, manipulator values40

must be saved and restored across function calls. C++ programers never do any of this.41

• C

A

has more sophisticated implicit value spacing than Python, plus implicit newline at the end of a print.42

22.1 Basic I/O43

The standard polymorphic I/O streams are stdin/sin (input), stdout/sout, and stderr/serr (output) (like C++ cin/cout/cerr).44

The standard I/O operator is the bit-wise (or) operator, '|', which is used to cascade multiple I/O operations. The C

A

45

header file for the I/O library is fstream.hfa.46



22.1 Basic I/O 53

22.1.1 Stream Output1

For implicit formatted output, the common case is printing a series of variables separated by whitespace.2

C

A

C++ Python

int x = 1, y = 2, z = 3;

sout | x | y | z; cout << x << " " << y << " " << z << endl;

x = 1; y = 2; z = 3

print( x, y, z )

1 2 3 1 2 3 1 2 3

3

The C

A

form has half the characters of the C++ form, and is similar to Python I/O with respect to implicit separators4

and newline. Similar simplification occurs for tuple I/O, which flattens the tuple and prints each value separated by5

“, ” (comma space).6

[int, [ int, int ] ] t1 = [ 1, [ 2, 3 ] ], t2 = [ 4, [ 5, 6 ] ];7

sout | t1 | t2; // print tuples8

1, 2, 3 4, 5, 69

The bit-wise | operator is used for I/O, rather C++ shift-operators, << and >>, as it is the lowest-priority overloadable10

operator, other than assignment. (Operators || and && are not overloadable in C

A

.) Therefore, fewer output expressions11

require parenthesis.12

C

A

: sout | x * 3 | y + 1 | z << 2 | x == y | (x | y) | (x || y) | (x > z ? 1 : 2);

C++: cout << x * 3 << y + 1 << (z << 2) << (x == y) << (x | y) << (x || y) << (x > z ? 1 : 2) << endl;

3 3 12 0 3 1 2

13

There is a weak similarity between the C

A

logical-or operator and the Shell pipe-operator for moving data, where data14

flows in the correct direction for input but the opposite direction for output. Input and output use a uniform operator,15

|, rather than C++’s << and >> input/output operators to prevent this common error in C++:16

cin << i; // why is this generating a lot of error messages?17

Streams exit and abort provide output with immediate program termination without and with generating a stack18

trace and core file. Stream exit implicitly returns EXIT_FAILURE to the shell.19

exit | "x (" | x | ") negative value."; // print, terminate, and return EXIT_FAILURE to shell20

abort | "x (" | x | ") negative value."; // print, terminate, and generate stack trace and core file21

Note, C

A

stream variables stdin, stdout, stderr, exit, and abort overload C variables stdin, stdout, stderr, and functions exit22

and abort, respectively.23

22.1.2 Stream Input24

For implicit formatted input, the common case is reading a sequence of values separated by whitespace, where the25

type of an input constant must match with the type of the input variable.26

char c; int i; double d

C

A

C++ Python

sin | c | i | d; cin >> c >> i >> d; c = input(); i = int(input()); d = float(input());

A 1 2.5 A 1 2.5 A

1

2.5

27

The format of numeric input values in the same as C constants without a trailing type suffix, as the input value-type is28

denoted by the input variable. For bool type, the constants are true and false. For integral types, any number of digits,29

optionally preceded by a sign (+ or -), where a30

• 1-9 prefix introduces a decimal value (0-9),31

• 0 prefix introduces an octal value (0-7), and32

• 0x or 0X prefix introduces a hexadecimal value (0-f) with lower or upper case letters.33

For floating-point types, any number of decimal digits, optionally preceded by a sign (+ or -), optionally containing a34

decimal point, and optionally followed by an exponent, e or E, with signed (optional) decimal digits. Floating-point35

values can also be written in hexadecimal format preceded by 0x or 0X with hexadecimal digits and exponent denoted36

by p or P. In all cases, whitespace characters are skipped until an appropriate value is found.37

char ch; int i; float f; double d; _Complex double cxd;38



54 22.2 Implicit Separator

sin | ch | i | f | d | cxd;1

X 42 1234.5 0xfffp-2 3.5+7.1i2

It is also possible to scan and ignore specific strings and whitespace using a string format.3

sin | "abc def"; // space matches arbitrary whitespace (2 blanks, 2 tabs)4

abc def5

A non-whitespace format character reads the next input character, compares the format and input characters, and if6

equal, the input character is discarded and the next format character is tested. Note, a single whitespace in the format7

string matches any quantity of whitespace characters from the stream (including none).8

For the C-string type, the default input format is any number of non-whitespace characters. There is no escape9

character supported in an input string, but any Latin-1 character can be typed directly in the input string. For example,10

if the following non-whitespace output is redirected into a file by the shell:11

sout | "\n\t\f\0234\x23";12

it can be read back from the file by redirecting the file as input using:13

char s[64];14

sin | wdi( sizeof(s), s ); // must specify string size15

The input string is always null terminated '\0' in the input variable. Because of potential buffer overrun when reading16

C strings, strings are restricted to work with input manipulators (see Section 22.6, p. 60). As well, there are multiple17

input-manipulators for scanning complex input string formats, e.g., a quoted character or string.18

In all cases, if an invalid data value is not found for a type or format string, the exception missing_data is19

raised and the input variable is unchanged. For example, when reading an integer and the string "abc" is found,20

the exception missing_data is raised to ensure the program does not proceed erroneously. If a valid data value is found,21

but it is larger than the capacity of the input variable, such reads are undefined.22

22.1.3 Stream Files23

Figure 8 shows the I/O stream operations for interacting with files other than sin, sout, and cerr.24

• fail tests the stream error-indicator, returning nonzero if it is set.25

• clear resets the stream error-indicator.26

• flush (ofstream only) causes any unwritten data for a stream to be written to the file.27

• eof (ifstream only) tests the end-of-file indicator for the stream pointed to by stream. Returns true if the end-of-28

file indicator is set, otherwise false.29

• open binds the file with name to a stream accessed with mode (see fopen).30

• close flushes the stream and closes the file.31

• write (ofstream only) writes size bytes to the stream. The bytes are written lazily when an internal buffer fills.32

Eager buffer writes are done with flush33

• read (ifstream only) reads size bytes from the stream.34

• ungetc (ifstream only) pushes the character back to the input stream. Pushed-back characters returned by subse-35

quent reads in the reverse order of pushing.36

The constructor functions:37

• create an unbound stream, which is subsequently bound to a file with open.38

• create a bound stream to the associated file with given mode.39

The destructor closes the stream.40

Figure 9, p. 56 demonstrates the file operations by showing the idiomatic C

A

command-line processing and copying41

an input file to an output file. Note, a stream variable may be copied because it is a reference to an underlying stream42

data-structures. All unusual I/O cases are handled as exceptions, including end-of-file.43

22.2 Implicit Separator44

The implicit separator character (space/blank) is a separator not a terminator for output. The rules for implicitly adding45

a separator are:46

1. A separator does not appear at the start or end of a line.47

sout | 1 | 2 | 3;48



22.2 Implicit Separator 55

// *********************************** ofstream ***********************************
bool fail( ofstream & );

void clearerr( ofstream & );

int flush( ofstream & );

void open( ofstream &, const char name[], const char mode[] = "w" );

void close( ofstream & );

ofstream & write( ofstream &, const char data[], size_t size );

void ?{}( ofstream & );

void ?{}( ofstream &, const char name[], const char mode[] = "w" );

void ∧?{}( ofstream & );

// *********************************** ifstream ***********************************
bool fail( ifstream & is );

void clearerr( ifstream & );

bool eof( ifstream & is );

void open( ifstream & is, const char name[], const char mode[] = "r" );

void close( ifstream & is );

ifstream & read( ifstream & is, char data[], size_t size );

ifstream & ungetc( ifstream & is, char c );

void ?{}( ifstream & is );

void ?{}( ifstream & is, const char name[], const char mode[] = "r" );

void ∧?{}( ifstream & is );

Figure 8: I/O Stream Functions

1 2 31

2. A separator does not appear before or after a character literal or variable.2

sout | '1' | '2' | '3';3

1234

3. A separator does not appear before or after a null (empty) C string, which is a local mechanism to disable5

insertion of the separator character.6

sout | 1 | "" | 2 | "" | 3;7

1238

4. A separator does not appear before a C string starting with the (extended) ASCII characters: ,.;!?)]}%¢»,9

where » is a closing citation mark.10

sout | 1 | ", x" | 2 | ". x" | 3 | "; x" | 4 | "! x" | 5 | "? x" | 6 | "% x"11

| 7 | "¢ x" | 8 | "» x" | 9 | ") x" | 10 | "] x" | 11 | "} x";12

Input1, x 2. x 3; x 4! x 5? x 6% x 7¢ x 8» x 9) x 10] x 11} x13

5. A separator does not appear after a C string ending with the (extended) ASCII characters: ([{=$£¥¡¿«, where14

¡¿ are inverted opening exclamation and question marks, and « is an opening citation mark.15

sout | "x (" | 1 | "x [" | 2 | "x {" | 3 | "x =" | 4 | "x $" | 5 | "x £" | 6 | "x ¥"16

| 7 | "x ¡" | 8 | "x ¿" | 9 | "x «" | 10;17

x (1 x [2 x {3 x =4 x $5 x £6 x ¥7 x ¡8 x ¿9 x «1018

6. A separator does not appear before/after a C string starting/ending with the ASCII quote or whitespace charac-19

ters: '̀": \t\v\f\r\n20

sout | "x "̀ | 1 | " x̀'" | 2 | "'x\"" | 3 | "\"x:" | 4 | ":x " | 5 | " x\t" | 6 | "\tx";21

x 1̀ x̀’2’x"3"x:4:x 5 x 6 x22

7. If a space is desired before or after one of the special string start/end characters, explicitly insert a space.23

sout | "x ( " | 1 | " ) x" | 2 | " , x" | 3 | " :x: " | 4;24

x ( 1 ) x 2 , x 3 :x: 425



56 22.3 Separation Manipulators

#include <fstream.hfa>

int main( int argc, char * argv[] ) {

ifstream in = stdin; // copy default files

ofstream out = stdout;

try {

choose ( argc ) {

case 3, 2:

open( in, argv[1] ); // open input file first as output creates file

if ( argc == 3 ) open( out, argv[2] ); // do not create output unless input opens

case 1: ; // use default files

default:

exit | "Usage" | argv[0] | "[ input-file (default stdin) "

"[ output-file (default stdout) ] ]";

} // choose

} catch( open_failure * ex; ex->istream == &in ) { // input file errors

exit | "Unable to open input file" | argv[1];

} catch( open_failure * ex; ex->ostream == &out ) { // output file errors

close( in ); // optional

exit | "Unable to open output file" | argv[2];

} // try

out | nlOff; // turn off auto newline

in | nlOn; // turn on reading newline

char ch;

try {

for () { // read/write characters

in | ch;

out | ch;

} // for

} catch( end_of_file * ) { // end-of-file raised

} // try

} // main

Figure 9: C

A

Command-Line Processing

22.3 Separation Manipulators1

The following manipulators control implicit output separation. The effect of these manipulators is global for an output2

stream (except sep and nosep).3

1. sepSet and sepVal/sepGet set and get the separator string. The separator string can be at most 16 characters4

including the '\0' string terminator (15 printable characters).5

sepSet( sout, ", $" ); // set separator from " " to ", $"6

sout | 1 | 2 | 3 | " \"" | sepVal | "\"";7

1, $2, $3 ", $"8

sepSet( sout, " " ); // reset separator to " "9

sout | 1 | 2 | 3 | " \"" | sepGet( sout ) | "\"";10

1 2 3 " "11

sepGet can be used to store a separator and then restore it:12

char store[sepSize]; // sepSize is the maximum separator size13

strcpy( store, sepGet( sout ) ); // copy current separator14

sepSet( sout, "_" ); // change separator to underscore15

sout | 1 | 2 | 3;16

1_2_317

sepSet( sout, store ); // change separator back to original18



22.4 Newline Manipulators 57

sout | 1 | 2 | 3;1

1 2 32

2. sepSetTuple and sepTupleVal/sepGetTuple get and set the tuple separator-string. The tuple separator-string can be3

at most 16 characters including the '\0' string terminator (15 printable characters).4

sepSetTuple( sout, " " ); // set tuple separator from ", " to " "5

sout | t1 | t2 | " \"" | sepTupleVal | "\"";6

1 2 3 4 5 6 " "7

sepSetTuple( sout, ", " ); // reset tuple separator to ", "8

sout | t1 | t2 | " \"" | sepGetTuple( sout ) | "\"";9

1, 2, 3 4, 5, 6 ", "10

As for sepGet, sepGetTuple can be use to store a tuple separator and then restore it.11

3. sepOff and sepOn globally toggle printing the separator.12

sout | sepOff | 1 | 2 | 3; // turn off implicit separator13

12314

sout | sepOn | 1 | 2 | 3; // turn on implicit separator15

1 2 316

4. sep and nosep locally toggle printing the separator with respect to the next printed item, and then return to the17

global separator setting.18

sout | 1 | nosep | 2 | 3; // turn off implicit separator for the next item19

12 320

sout | sepOff | 1 | sep | 2 | 3; // turn on implicit separator for the next item21

1 2322

The tuple separator also responses to being turned on and off.23

sout | t1 | nosep | t2; // turn off implicit separator for the next item24

1, 2, 34, 5, 625

sep cannot be used to start/end a line with a separator because separators do not appear at the start/end of a line.26

Use sep to accomplish this functionality.27

sout | sep | 1 | 2 | 3 | sep; // sep does nothing at start/end of line28

1 2 329

sout | sepVal | 1 | 2 | 3 | sepVal ; // use sepVal to print separator at start/end of line30

1 2 331

22.4 Newline Manipulators32

The following manipulators control newline separation for input and output.33

For input:34

1. nlOn reads the newline character, when reading single characters.35

2. nlOff does not read the newline character, when reading single characters.36

3. nl scans characters until the next newline character, i.e., ignore the remaining characters in the line. If nlOn is37

enabled, the nl is also consumed.38

For example, in:39

int i, j;40

sin | i | nl | j;41

1 242

343

variable i is assigned 1, the 2 is skipped, and variable j is assigned 3. For example, in:44

char ch

sin | ch; // read X

X

sin | nlOn; // enable reading newlines

sin | ch; // read newline45

the left example skips the newline and reads 'X' into ch, while the right example reads the newline into ch.46



58 22.5 Output Manipulators

For output:1

1. nlOn implicitly prints a newline at the end of each output expression.2

2. nlOff does not implicitly print a newline at the end of each output expression.3

3. nl inserts a newline.4

sout | nl; // only print newline5

sout | 2; // implicit newline6

sout | 3 | nl | 4 | nl; // terminating nl merged with implicit newline7

sout | 5 | nl | nl; // again terminating nl merged with implicit newline8

sout | 6; // implicit newline9

10

211

312

413

514

15

616

Note, a terminating nl is merged with (overrides) the implicit newline at the end of the sout expression, otherwise17

it is impossible to print a single newline18

22.5 Output Manipulators19

The following manipulators control formatting (printing) of the argument output values.20

1. bin( integer ) print value in base 2 preceded by 0b/0B.21

sout | bin( 0 ) | bin( 27HH ) | bin( 27H ) | bin( 27 ) | bin( 27L );22

0b0 0b11011 0b11011 0b11011 0b1101123

sout | bin( -27HH ) | bin( -27H ) | bin( -27 ) | bin( -27L );24

0b11100101 0b1111111111100101 0b11111111111111111111111111100101 0b(58 1s)10010125

2. oct( integer ) print value in base 8 preceded by 0.26

sout | oct( 0 ) | oct( 27HH ) | oct( 27H ) | oct( 27 ) | oct( 27L );27

0 033 033 033 03328

sout | oct( -27HH ) | oct( -27H ) | oct( -27 ) | oct( -27L );29

0345 0177745 037777777745 0177777777777777777774530

Note, octal 0 is not preceded by 0 to prevent confusion.31

3. hex( integer / floating-point ) print value in base 16 preceded by 0x/0X.32

sout | hex( 0 ) | hex( 27HH ) | hex( 27H ) | hex( 27 ) | hex( 27L );33

0x0 0x1b 0x1b 0x1b 0x1b34

sout | hex( -27HH ) | hex( -27H ) | hex( -27 ) | hex( -27L );35

0xe5 0xffe5 0xffffffe5 0xffffffffffffffe536

37

sout | hex( 0.0 ) | hex( 27.5F ) | hex( 27.5 ) | hex( 27.5L );38

0x0p+0 0x1.b8p+4 0x1.b8p+4 0xd.cp+139

sout | hex( -27.5F ) | hex( -27.5 ) | hex( -27.5L );40

-0x1.b8p+4 -0x1.b8p+4 -0xd.cp+141

4. sci( floating-point ) print value in scientific notation with exponent. Default is 6 digits of precision.42

sout | sci( 0.0 ) | sci( 27.5 ) | sci( -27.5 );43

0.000000e+00 2.750000e+01 -2.750000e+0144

5. eng( floating-point ) print value in engineering notation with exponent, which means the exponent is adjusted to45

a multiple of 3.46

sout | eng( 0.0 ) | eng( 27000.5 ) | eng( -27.5e7 );47

0e0 27.0005e3 -275e648

6. unit( engineering-notation ) print engineering exponent as a letter between the range 10−24 and 1024:49

y⇒ 10−24, z⇒ 10−21, a⇒ 10−18, f⇒ 10−15, p⇒ 10−12, n⇒ 10−9, u⇒ 10−6, m⇒ 10−3, K⇒ 103, M50

⇒ 106, G⇒ 109, T⇒ 1012, P⇒ 1015, E⇒ 1018, Z⇒ 1021, Y⇒ 1024.51

For exponent 100, no decimal point or letter is printed.52



22.5 Output Manipulators 59

sout | unit(eng( 0.0 )) | unit(eng( 27000.5 )) | unit(eng( -27.5e7 ));1

0 27.0005K -275M2

7. upcase( bin / hex / floating-point ) print letters in a value in upper case. Lower case is the default.3

sout | upcase( bin( 27 ) ) | upcase( hex( 27 ) ) | upcase( 27.5e-10 ) | upcase( hex( 27.5 ) );4

0B11011 0X1B 2.75E-09 0X1.B8P+45

8. nobase( integer ) do not precede bin, oct, hex with 0b/0B, 0, or 0x/0X. Printing the base is the default.6

sout | nobase( bin( 27 ) ) | nobase( oct( 27 ) ) | nobase( hex( 27 ) );7

11011 33 1b8

9. nodp( floating-point ) do not print a decimal point if there are no fractional digits. Printing a decimal point is the9

default, if there are no fractional digits.10

sout | 0. | nodp( 0. ) | 27.0 | nodp( 27.0 ) | nodp( 27.5 );11

0.0 0 27.0 27 27.512

10. sign( integer / floating-point ) prefix with plus or minus sign (+ or -). Only printing the minus sign is the default.13

sout | sign( 27 ) | sign( -27 ) | sign( 27. ) | sign( -27. ) | sign( 27.5 ) | sign( -27.5 );14

+27 -27 +27.0 -27.0 +27.5 -27.515

11. wd( minimum, value ), wd( minimum, precision, value ) For all types, minimum is the number of printed char-16

acters. If the value is shorter than the minimum, it is padded on the right with spaces.17

sout | wd( 4, 34) | wd( 3, 34 ) | wd( 2, 34 );18

sout | wd( 10, 4.) | wd( 9, 4. ) | wd( 8, 4. );19

sout | wd( 4, "ab" ) | wd( 3, "ab" ) | wd( 2, "ab" );20

34 34 3421

4.000000 4.000000 4.00000022

ab ab ab23

If the value is larger, it is printed without truncation, ignoring the minimum.24

sout | wd( 4, 34567 ) | wd( 3, 34567 ) | wd( 2, 34567 );25

sout | wd( 4, 3456. ) | wd( 3, 3456. ) | wd( 2, 3456. );26

sout | wd( 4, "abcde" ) | wd( 3, "abcde" ) | wd( 2,"abcde" );27

34567 34567 3456728

3456. 3456. 3456.29

abcde abcde abcde30

For integer types, precision is the minimum number of printed digits. If the value is shorter, it is padded on31

the left with leading zeros.32

sout | wd( 4,3, 34 ) | wd( 8,4, 34 ) | wd( 10,10, 34 );33

034 0034 000000003434

If the value is larger, it is printed without truncation, ignoring the precision.35

sout | wd( 4,1, 3456 ) | wd( 8,2, 3456 ) | wd( 10,3, 3456 );36

3456 3456 345637

If precision is 0, nothing is printed for zero. If precision is greater than the minimum, it becomes the minimum.38

sout | wd( 4,0, 0 ) | wd( 3,10, 34 );39

000000003440

For floating-point types, precision is the minimum number of digits after the decimal point.41

sout | wd( 6,3, 27.5 ) | wd( 8,1, 27.5 ) | wd( 8,0, 27.5 ) | wd( 3,8, 27.5 );42

27.500 27.5 28. 27.5000000043

For the C-string type, precision is the maximum number of printed characters, so the string is truncated if it44

exceeds the maximum.45

sout | wd( 6,8, "abcd" ) | wd( 6,8, "abcdefghijk" ) | wd( 6,3, "abcd" ) | wd( 10, "" ) | 'X';46

abcd abcdefgh abc X47

Note, printing the null string with minimum width L pads with L spaces.48

12. ws( minimum, significant, floating-point ) For floating-point types, minimum is the same as for manipulator49

wd, but significant is the maximum number of significant digits to be printed for both the integer and fractions50

(versus only the fraction for wd). If a value’s significant digits is greater than significant, the last significant digit51



60 22.6 Input Manipulators

is rounded up.1

sout | ws(6,6, 234.567) | ws(6,5, 234.567) | ws(6,4, 234.567) | ws(6,3, 234.567);2

234.567 234.57 234.6 2353

If a value’s magnitude is greater than significant, the value is printed in scientific notation with the specified4

number of significant digits.5

sout | ws(6,6, 234567.) | ws(6,5, 234567.) | ws(6,4, 234567.) | ws(6,3, 234567.);6

234567. 2.3457e+05 2.346e+05 2.35e+057

If significant is greater than minimum, it defines the number of printed characters.8

sout | ws(3,6, 234567.) | ws(4,6, 234567.) | ws(5,6, 234567.) | ws(6,6, 234567.);9

234567. 234567. 234567. 234567.10

13. left( field-width ) left justify within the given field.11

sout | left(wd(4, 27)) | left(wd(10, 27.)) | left(wd(10, 27.5)) | left(wd(4,3, 27)) | left(wd(10,3, 27.5));12

27 27.000000 27.500000 027 27.50013

14. pad0( field-width ) left pad with zeroes (0).14

sout | pad0( wd( 4, 27 ) ) | pad0( wd( 4,3, 27 ) ) | pad0( wd( 8,3, 27.5 ) );15

0027 027 0027.50016

22.6 Input Manipulators17

A string variable must be large enough to contain the input sequence. To force programmers to consider buffer overruns18

for C-string input, C-strings may only be read with a width field, which should specify a size less than or equal to the19

C-string size, e.g.:20

char line[64];21

sin | wdi( sizeof(line), line ); // must specify string size22

Certain input manipulators support a scanset, which is a simple regular expression, where the matching set contains23

any Latin-1 character (8-bits) or character ranges using minus. For example, the scanset "a-zA-Z -/?§" matches24

any number of characters between 'a' and 'z', between 'A' and 'Z', between space and '/', and characters '?'25

and (Latin-1) '§'. The following string is matched by this scanset:26

!&%$ abAA () ZZZ ??§ xx§§27

To match a minus, make it the first character in the set, e.g., "-0-9". Other complex forms of regular-expression28

matching are unsupported.29

The following manipulators control scanning of input values (reading) and only affect the format of the argument.30

1. skip( scanset ), skip( N ) consumes either the scanset or the next N characters, including newlines. If the match31

successes, the input characters are ignored, and input continues with the next character. If the match fails, the32

input characters are left unread.33

char scanset[ ] = "abc";34

sin | "abc " | skip( scanset ) | skip( 5 ); // match and skip input sequence35

abc abc xxx36

Again, the blank in the format string "abc " matches any number of whitespace characters.37

2. wdi( maximum, T & v ) For all types except char *, whitespace is skipped and the longest sequence of non-38

whitespace characters matching an appropriate typed (T) value is read, converted into its corresponding internal39

form, and written into the T variable. maximum is the maximum number of characters read for the current value40

rather than the longest sequence.41

char ch; char ca[3]; int i; double d;42

sin | wdi( sizeof(ch), ch ) | wdi( sizeof(ca), ca[0] ) | wdi( 3, i ) | wdi( 8, d ); // c == 'a', ca == "bcd", i == 123, d == 345.643

abcd1233.456E+244

Here, ca[0] is type char, so the width reads 3 characters without a null terminator. If an input value is not found45

for a variable, the exception missing_data is raised, and the input variable is unchanged.46

Note, input wdi cannot be overloaded with output wd because both have the same parameters but return47

different types. Currently, C

A

cannot distinguish between these two manipulators in the middle of an sout/sin48

expression based on return type.49



22.6 Input Manipulators 61

3. wdi( maximum size, char s[] ) For type char *, whitespace is skippped and the longest sequence of non-whitespace1

characters is read, without conversion, and written into the string variable (null terminated). maximum size is2

the maximum number of characters in the string variable. If the non-whitespace sequence of input characters is3

greater than maximum size− 1 (null termination), the exception cstring_length is raised.4

char cs[10];5

sin | wdi( sizeof(cs), cs );6

0123456787

Nine non-whitespace character are read and the null character is added to make ten.8

4. wdi( maximum size, maximum read, char s[] ) This manipulator is the same as the previous one, except maximum9

read is the maximum number of characters read for the current value rather than the longest sequence, where10

maximum read ≤ maximum size.11

char cs[10];12

sin | wdi( sizeof(cs), 9, cs );13

012345678914

The exception cstring_length is not raised, because the read stops reading after nine characters.15

5. getline( wdi manipulator, const char delimiter = '\n' ) consumes the scanset "[∧D]D", where D is the delimiter16

character, which reads all characters from the current input position to the delimiter character into the string17

(null terminated), and consumes and ignores the delimiter. If the delimiter character is omitted, it defaults to18

'\n' (newline).19

char cs[10];20

sin | getline( wdi( sizeof(cs), cs ) );21

sin | getline( wdi( sizeof(cs), cs ), 'X' ); // X is the line delimiter22

abc ?? #@%23

abc ?? #@%X w24

The same value is read for both input strings.25

6. quote( char & ch, const char Ldelimiter = '\'', const char Rdelimiter = '\0' ) consumes the string "LCR", where26

L is the left delimiter character, C is the value in ch, and R is the right delimiter character, which skips whitespace,27

consumes and ignores the left delimiter, reads a single character into ch, and consumes and ignores the right28

delimiter (3 characters). If the delimit character is omitted, it defaults to '\'' (single quote).29

char ch;30

sin | quote( ch ); sin | quote( ch, '"' ); sin | quote( ch, '[', ']' );31

'a' "a"[a]32

7. quote( wdi manipulator, const char Ldelimiter = '\'', const char Rdelimiter = '\0' ) consumes the scanset33

"L[∧R]R", where L is the left delimiter character and R is the right delimiter character, which skips whites-34

pace, consumes and ignores the left delimiter, reads characters until the right-delimiter into the string variable35

(null terminated), and consumes and ignores the right delimiter. If the delimit character is omitted, it defaults to36

'"' (double quote).37

char cs[10];38

sin | quote( wdi( sizeof(cs), cs ) ); // " is the start/end delimiter39

sin | quote( wdi( sizeof(cs), cs ), '\'' ); // ’ is the start/end delimiter40

sin | quote( wdi( sizeof(cs), cs ), '[', ']' ); // [ is the start and ] is the end delimiter41

"abc" 'abc'[abc]42

8. incl( scanset, wdi manipulator ) consumes the scanset, which reads all the scanned characters into the string43

variable (null terminated).44

char cs[10];45

sin | incl( "abc", cs );46

bcaxyz47

9. excl( scanset, wdi manipulator ) consumes the not scanset, which reads all the scanned characters into the string48

variable (null terminated).49

char cs[10];50

sin | excl( "abc", cs );51

xyzbca52



62 22.7 Concurrent Stream Access

10. ignore( T & v or const char cs[] or string manipulator ) consumes the appropriate characters for the type and1

ignores them, so the input variable is unchanged.2

double d;3

char cs[10];4

sin | ignore( d ); // d is unchanged5

sin | ignore( cs ); // cs is unchanged, no wdi required6

sin | ignore( quote( wdi( sizeof(cs), cs ) ) ); // cs is unchanged7

-75.35e-4 25 "abc"8

22.7 Concurrent Stream Access9

When a stream is shared by multiple threads, input or output characters can be intermixed or cause failure. For10

example, if two threads execute the following:11

thread1 : sout | "abc " | "def ";12

thread2 : sout | "uvw " | "xyz ";13

possible outputs are:14

abc def

uvw xyz

abc uvw xyz

def

uvw abc xyz def abuvwc dexf

yz

uvw abc def

xyz
15

Concurrent operations can even corrupt the internal state of the stream resulting in failure. As a result, some form of16

mutual exclusion is required for concurrent stream access.17

A coarse-grained solution is to perform all stream operations via a single thread or within a monitor providing the18

necessary mutual exclusion for the stream. A fine-grained solution is to have a lock for each stream, which is acquired19

and released around stream operations by each thread. C

A

provides a fine-grained solution where a recursive lock is20

acquired and released indirectly via a manipulator acquire or instantiating an RAII type specific for the kind of stream:21

osacquire for output streams and isacquire for input streams.22

The common usage is the short form of the mutex statement to lock a stream during a single cascaded I/O expres-23

sion, e.g.:24

thread1 : mutex( sout ) sout | "abc " | "def ";25

thread2 : mutex( sout ) sout | "uvw " | "xyz ";26

Now, the order of the thread execution is still non-deterministic, but the output is constrained to two possible lines in27

either order.28

abc def

uvw xyz

uvw xyz

abc def
29

In summary, the stream lock is acquired by the acquire manipulator and implicitly released at the end of the cascaded30

I/O expression ensuring all operations in the expression occur atomically.31

To lock a stream across multiple I/O operations, he long form of the mutex statement is used, e.g.:32

mutex( sout ) {33

sout | 1;34

mutex( sout ) sout | 2 | 3; // unnecessary, but ok because of recursive lock35

sout | 4;36

} // implicitly release sout lock37

Note, the unnecessary mutex in the middle of the mutex statement, works because the recursive stream-lock can be38

acquired/released multiple times by the owner thread. Hence, calls to functions that also acquire a stream lock for their39

output do not result in deadlock.40

The previous values written by threads 1 and 2 can be read in concurrently:41

mutex( sin ) {42

int x, y, z, w;43

sin | x;44

mutex( sin ) sin | y | z; // unnecessary, but ok because of recursive lock45

sin | w;46

} // implicitly release sin lock47

Again, the order of the reading threads is non-deterministic. Note, non-deterministic reading is rare.48



22.8 Locale 63

WARNING: The general problem of nested locking can occur if routines are called in an I/O sequence that block,1

e.g.:2

mutex( sout ) sout | "data:" | rtn( mon ); // mutex call on monitor3

If the thread executing the I/O expression blocks in the monitor with the sout lock, other threads writing to sout also4

block until the thread holding the lock is unblocked and releases it. This scenario can lead to deadlock, if the thread5

that is going to unblock the thread waiting in the monitor first writes to sout (deadly embrace). To prevent nested6

locking, a simple precaution is to factor out the blocking call from the expression, e.g.:7

int data = rtn( mon );8

mutex( sout ) sout | "data:" | data;9

22.8 Locale10

Cultures use different syntax, called a locale, for printing numbers so they are easier to read, e.g.:11

12,345.123 // comma separator, period decimal-point12

12.345,123 // period separator, comma decimal-point13

12 345,123. // space separator, comma decimal-point, period terminator14

A locale is selected with function setlocale, and the corresponding locale package must be installed on the underlying15

system; setlocale returns 0p if the requested locale is unavailable. Furthermore, a locale covers the syntax for many16

cultural items, e.g., address, measurement, money, etc. This discussion applies to item LC_NUMERIC for formatting17

non-monetary integral and floating-point values. Figure 10 shows selecting different cultural syntax, which may be18

associated with one or more countries.19

23 String Stream20

The stream types ostrstream and istrstream provide all the stream formatting capabilities to/from a C string rather than21

a stream file. Figure 11, p. 65 shows writing (output) to and reading (input) from a C string. The only string stream22

operations different from a file stream are:23

• constructors to create a stream that writes to a write buffer (ostrstream) of size, or reads from a read buffer24

(istrstream) containing a C string terminated with '\0'.25

void ?{}( ostrstream &, char buf[], size_t size );26

void ?{}( istrstream & is, char buf[] );27

• write (ostrstream only) writes all the buffered characters to the specified stream (stdout default).28

ostrstream & write( ostrstream & os, FILE * stream = stdout );29

There is no read for istrstream.30

24 Structures31

Structures in C

A

are basically the same as structures in C. A structure is defined with the same syntax as in C. When32

referring to a structure in C

A

, users may omit the struct keyword.33

struct Point {34

double x;35

double y;36

};37

38

Point p = {0.0, 0.0};39

C

A

does not support inheritance among types, but instead uses composition to enable reuse of structure fields.40

Composition is achieved by embedding one type into another. When type A is embedded in type B, an object with41

type B may be used as an object of type A, and the fields of type A are directly accessible. Embedding types is42

achieved using anonymous members. For example, using Point from above:43

void foo(Point p);44

45

struct ColoredPoint {46



64 25 Constructors and Destructors

#include <fstream.hfa>

#include <locale.h> // setlocale

#include <stdlib.h> // getenv

int main() {

void print() {

sout | 12 | 123 | 1234 | 12345 | 123456 | 1234567;

sout | 12. | 123.1 | 1234.12 | 12345.123 | 123456.1234 | 1234567.12345;

sout | nl;

}

sout | "Default locale off";

print();

sout | "Locale on" | setlocale( LC_NUMERIC, getenv( "LANG" ) ); // enable local locale

print();

sout | "German" | setlocale( LC_NUMERIC, "de_DE.UTF-8" ); // enable German locale

print();

sout | "Ukraine" | setlocale( LC_NUMERIC, "uk_UA.utf8" ); // enable Ukraine locale

print();

sout | "Default locale off" | setlocale( LC_NUMERIC, "C" ); // disable locale

print();

}

Default locale off

12 123 1234 12345 123456 1234567

12. 123.1 1234.12 12345.123 123456.1234 1234567.12345

Locale on en_US.UTF-8

12 123 1,234 12,345 123,456 1,234,567

12. 123.1 1,234.12 12,345.123 123,456.1234 1,234,567.12345

German de_DE.UTF-8

12 123 1.234 12.345 123.456 1.234.567

12. 123,1. 1.234,12 12.345,123 123.456,1234 1.234.567,12345

Ukraine uk_UA.utf8

12 123 1 234 12 345 123 456 1 234 567

12. 123,1. 1 234,12. 12 345,123. 123 456,1234. 1 234 567,12345.

Default locale off C

12 123 1234 12345 123456 1234567

12. 123.1 1234.12 12345.123 123456.1234 1234567.12345

Figure 10: Stream Locale

Point; // anonymous member (no identifier)1

int Color;2

};3

...4

ColoredPoint cp = ...;5

cp.x = 10.3; // x from Point is accessed directly6

cp.color = 0x33aaff; // color is accessed normally7

foo(cp); // cp can be used directly as a Point8

25 Constructors and Destructors9

C

A

supports C initialization of structures, but it also adds constructors for more advanced initialization. Additionally,10

C

A

adds destructors that are called when a variable is deallocated (variable goes out of scope or object is deleted).11

These functions take a reference to the structure as a parameter (see Section 12, p. 20 for more information).12



26 Overloading 65

#include <fstream.hfa>

#include <strstream.hfa>

int main() {

enum { size = 256 };

char buf[size]; // output buffer

ostrstream osstr = { buf, size }; // bind output buffer/size

int i = 3, j = 5, k = 7;

double x = 12345678.9, y = 98765.4321e-11;

osstr | i | hex(j) | wd(10, k) | sci(x) | unit(eng(y)) | "abc";

write( osstr ); // write string to stdout

printf( "%s", buf ); // same lines of output

sout | i | hex(j) | wd(10, k) | sci(x) | unit(eng(y)) | "abc";

char buf2[] = "12 14 15 3.5 7e4 abc"; // input buffer

istrstream isstr = { buf2 };

char s[10];

isstr | i | j | k | x | y | s;

sout | i | j | k | x | y | s;

}

3 0x5 7 1.234568e+07 987.654n abc

3 0x5 7 1.234568e+07 987.654n abc

3 0x5 7 1.234568e+07 987.654n abc

12 14 15 3.5 70000. abc

Figure 11: String Stream Processing

26 Overloading1

Overloading refers to the capability of a programmer to define and use multiple objects in a program with the same2

name. In C

A

, a declaration may overload declarations from outer scopes with the same name, instead of hiding3

them as is the case in C. This may cause identical C and C

A

programs to behave differently. The compiler selects4

the appropriate object (overload resolution) based on context information at the place where it is used. Overloading5

allows programmers to give functions with different signatures but similar semantics the same name, simplifying the6

interface to users. Disadvantages of overloading are that it can be used to give functions with different semantics the7

same name, causing confusion, or that the compiler may resolve to a different function from what the programmer8

expected. C

A

allows overloading of functions, operators, variables, and even the constants 0 and 1.9

The compiler follows some overload resolution rules to determine the best interpretation of all of these overloads.10

The best valid interpretations are the valid interpretations that use the fewest unsafe conversions. Of these, the best11

are those where the functions and objects involved are the least polymorphic. Of these, the best have the lowest total12

conversion cost, including all implicit conversions in the argument expressions. Of these, the best have the highest13

total conversion cost for the implicit conversions (if any) applied to the argument expressions. If there is no single best14

valid interpretation, or if the best valid interpretation is ambiguous, then the resulting interpretation is ambiguous. For15

details about type inference and overload resolution, please see the C

A

Language Specification.16

int foo(int a, int b) {17

float sum = 0.0;18

float special = 1.0;19

{20

int sum = 0;21

// both the float and int versions of sum are available22

float special = 4.0;23

// this inner special hides the outer version24

...25

}26

...27



66 26.1 Constant

struct Widget {

int id;

float size;

int * optionalint;

};

// ?{} is the constructor operator identifier

// The first argument is a reference to the type to initialize

// Subsequent arguments can be specified for initialization

void ?{}( Widget & w ) { // default constructor

w.id = -1;

w.size = 0.0;

w.optionalint = 0p;

}

// constructor with values (does not need to include all fields)

void ?{}( Widget & w, int id, float size ) {

w.id = id;

w.size = size;

w.optionalint = 0p;

}

// ∧?{} is the destructor operator identifier

void ∧?{}( Widget & w ) { // destructor

w.id = 0;

w.size = 0.0;

if ( w.optionalint != 0p ) {

free( w.optionalint );

w.optionalint = 0p;

}

}

Widget baz; // reserve space only

Widget foo{}; // calls default constructor

Widget bar{ 23, 2.45 }; // calls constructor with values

baz{ 24, 0.91 }; // calls constructor with values

?{}( baz, 24, 0.91 ); // explicit call to constructor
∧?{} (bar ); // explicit call to destructor

Figure 12: Constructors and Destructors

}1

26.1 Constant2

The constants 0 and 1 have special meaning. In C

A

, as in C, all scalar types can be incremented and decremented,3

which is defined in terms of adding or subtracting 1. The operations &&, ||, and ! can be applied to any scalar arguments4

and are defined in terms of comparison against 0 (e.g., (a && b) becomes (a != 0 && b != 0)).5

In C, the integer constants 0 and 1 suffice because the integer promotion rules can convert them to any arithmetic6

type, and the rules for pointer expressions treat constant expressions evaluating to 0 as a special case. However, user-7

defined arithmetic types often need the equivalent of a 1 or 0 for their functions or operators, polymorphic functions8

often need 0 and 1 constants of a type matching their polymorphic parameters, and user-defined pointer-like types may9

need a null value. Defining special constants for a user-defined type is more efficient than defining a conversion to the10

type from bool.11

Why just 0 and 1? Why not other integers? No other integers have special status in C. A facility that let program-12

mers declare specific constants const Rational 12, for instance. would not be much of an improvement. Some facility13



26.2 Variable 67

for defining the creation of values of programmer-defined types from arbitrary integer tokens would be needed. The1

complexity of such a feature does not seem worth the gain.2

For example, to define the constants for a complex type, the programmer would define the following:3

struct Complex {4

double real;5

double imaginary;6

}7

8

const Complex 0 = {0, 0};9

const Complex 1 = {1, 0};10

...11

12

Complex a = 0;13

...14

15

a++;16

...17

if (a) { // same as if (a == 0)18

...19

}20

26.2 Variable21

The overload rules of C

A

allow a programmer to define multiple variables with the same name, but different types.22

Allowing overloading of variable names enables programmers to use the same name across multiple types, simplifying23

naming conventions and is compatible with the other overloading that is allowed. For example, a developer may want24

to do the following:25

int pi = 3;26

float pi = 3.14;27

char pi = .p.;28

26.3 Function Overloading29

Overloaded functions in C

A

are resolved based on the number and type of arguments, type of return value, and the30

level of specialization required (specialized functions are preferred over generic).31

The examples below give some basic intuition about how the resolution works.32

// Choose the one with less conversions33

int doSomething(int value) {...} // option 134

int doSomething(short value) {...} // option 235

36

int a, b = 4;37

short c = 2;38

39

a = doSomething(b); // chooses option 140

a = doSomething(c); // chooses option 241

42

// Choose the specialized version over the generic43

44

generic(type T)45

T bar(T rhs, T lhs) {...} // option 346

float bar(float rhs, float lhs){...} // option 447

float a, b, c;48

double d, e, f;49

c = bar(a, b); // chooses option 450

51

// specialization is preferred over unsafe conversions52

53

f = bar(d, e); // chooses option 554



68 26.4 Operator

26.4 Operator1

C

A

also allows operators to be overloaded, to simplify the use of user-defined types. Overloading the operators allows2

the users to use the same syntax for their custom types that they use for built-in types, increasing readability and3

improving productivity. C

A

uses the following special identifiers to name overloaded operators:4

?[?] subscripting
?() function call
?++ postfix increment
?-- postfix decrement
++? prefix increment
--? prefix decrement

*? dereference
+? unary plus
-? arithmetic negation
∼? bitwise negation
!? logical complement
?\? exponentiation
?*? multiplication
?/? division
?%? remainder

?+? addition
?-? subtraction
?<<? left shift
?>>? right shift
?<? less than
?<=? less than or equal
?>=? greater than or equal
?>? greater than
?==? equality
?!=? inequality
?&? bitwise AND
?∧? exclusive OR
?|? inclusive OR

?=? simple assignment
?\=? exponentiation assignment
?*=? multiplication assignment
?/=? division assignment
?%=? remainder assignment
?+=? addition assignment
?-=? subtraction assignment
?<<=? left-shift assignment
?>>=? right-shift assignment
?&=? bitwise AND assignment
?∧=? exclusive OR assignment
?|=? inclusive OR assignment

Table 2: Operator Identifiers

These identifiers are defined such that the question marks in the name identify the location of the operands. These5

operands represent the parameters to the functions, and define how the operands are mapped to the function call. For6

example, a + b becomes ?+?(a, b).7

In the example below, a new type, myComplex, is defined with an overloaded constructor, + operator, and string8

operator. These operators are called using the normal C syntax.9

type Complex = struct { // define a Complex type10

double real;11

double imag;12

}13

14

// Constructor with default values15

16

void ?{}(Complex &c, double real = 0.0, double imag = 0.0) {17

c.real = real;18

c.imag = imag;19

}20

21

Complex ?+?(Complex lhs, Complex rhs) {22

Complex sum;23

sum.real = lhs.real + rhs.real;24

sum.imag = lhs.imag + rhs.imag;25

return sum;26

}27

28

String ()?(const Complex c) {29

// use the string conversions for the structure members30

return (String)c.real + . + . + (String)c.imag + .i.;31

}32

...33

34

Complex a, b, c = {1.0}; // constructor for c w/ default imag35

...36

c = a + b;37



27 Auto Type-Inferencing 69

print(.sum = . + c);1

27 Auto Type-Inferencing2

Auto type-inferencing occurs in a declaration where a variable’s type is inferred from its initialization expression type.3

C++ gcc

auto j = 3.0 * 4;

int i;

auto k = i;

#define expr 3.0 * i

typeof(expr) j = expr;

int i;

typeof(i) k = i;

// use type of initialization expression

// use type of primary variable

4

The two important capabilities are:5

• not determining or writing long generic types,6

• ensuring secondary variables, related to a primary variable, always have the same type.7

In C

A

, typedef provides a mechanism to alias long type names with short ones, both globally and locally, but not8

eliminate the use of the short name. gcc provides typeof to declare a secondary variable from a primary variable.9

C

A

also relies heavily on the specification of the left-hand side of assignment for type inferencing, so in many cases10

it is crucial to specify the type of the left-hand side to select the correct type of the right-hand expression. Only11

for overloaded routines with the same return type is variable type-inferencing possible. Finally, auto presents the12

programming problem of tracking down a type when the type is actually needed. For example, given13

auto j = ...14

and the need to write a routine to compute using j15

void rtn( ... parm );16

rtn( j );17

A programmer must work backwards to determine the type of j’s initialization expression, reconstructing the possibly18

long generic type-name. In this situation, having the type name or a short alias is very useful.19

There is also the conundrum in type inferencing of when to brand a type. That is, when is the type of the variable20

more important than the type of its initialization expression. For example, if a change is made in an initialization21

expression, it can cause cascading type changes and/or errors. At some point, a variable type needs to remain constant22

and the expression to be in error when it changes.23

Given typedef and typeof in C

A

, and the strong need to use the type of left-hand side in inferencing, auto type-24

inferencing is not supported at this time. Should a significant need arise, this feature can be revisited.25

28 Concurrency26

Concurrency support in C

A

is implemented on top of a highly efficient runtime system of light-weight, M:N, user27

level threads. The model integrates concurrency features into the language by making the structure type the core28

unit of concurrency. All communication occurs through method calls, where data is sent via method arguments, and29

received via the return value. This enables a very familiar interface to all programmers, even those with no parallel30

programming experience. It also allows the compiler to do static type checking of all communication, a very important31

safety feature. This controlled communication with type safety has some similarities with channels in Go, and can32

actually implement channels exactly, as well as create additional communication patterns that channels cannot. Mutex33

objects, monitors, are used to contain mutual exclusion within an object and synchronization across concurrent threads.34

28.1 Coroutine35

Coroutines are the precursor to threads. Figure 13 shows a coroutine that computes the Fibonacci numbers.36

28.2 Monitors37

A monitor is a structure in C

A

which includes implicit locking of its fields. Users of a monitor interact with it just like38

any structure, but the compiler handles code as needed to ensure mutual exclusion. An example of the definition of a39

monitor is shown here:40



70 29.1 C++

#include <fstream.hfa>

#include <coroutine.hfa>

coroutine Fibonacci {

int fn; // used for communication

};

void main( Fibonacci & fib ) with( fib ) { // called on first resume

int fn1, fn2; // retained between resumes

fn = 0; fn1 = fn; // 1st case

suspend; // restart last resume

fn = 1; fn2 = fn1; fn1 = fn; // 2nd case

suspend; // restart last resume

for () {

fn = fn1 + fn2; fn2 = fn1; fn1 = fn; // general case

suspend; // restart last resume

}

}

int next( Fibonacci & fib ) with( fib ) {

resume( fib ); // restart last suspend

return fn;

}

int main() {

Fibonacci f1, f2;

for ( 10 ) { // print N Fibonacci values

sout | next( f1 ) | next( f2 );

}

}

Figure 13: Fibonacci Coroutine

type Account = monitor {1

const unsigned long number; // account number2

float balance; // account balance3

};4

28.3 Threads5

C

A

also provides a simple mechanism for creating and utilizing user level threads. A thread provides mutual exclusion6

like a monitor, and also has its own execution state and a thread of control. Similar to a monitor, a thread is defined7

like a structure:8

29 Language Comparisons9

C

A

is one of many languages that attempts to improve upon C. In developing C

A

, many other languages were consulted10

for ideas, constructs, and syntax. Therefore, it is important to show how these languages each compare with Do. In11

this section, C

A

is compared with what the writers of this document consider to be the closest competitors of Do: C++,12

Go, Rust, and D.13

29.1 C++14

C++ is a general-purpose programming language. It is an imperative, object-oriented and generic programming lan-15

guage, while also providing facilities for low-level memory manipulation. The primary focus of C++ was adding16

object-oriented programming to C, and this is the primary difference between C++ and C

A

. C++ uses classes to encap-17

sulate data and the functions that operate on that data, and to hide the internal representation of the data. C

A

uses18

modules instead to perform these same tasks. Classes in C++ also enable inheritance among types. Instead of inheri-19

tance, C

A

embraces composition and interfaces to achieve the same goals with more flexibility. There are many studies20



29.2 Go 71

#include <fstream.hfa>

#include <thread.hfa>

monitor AtomicCnt { int counter; };

void ?{}( AtomicCnt & c, int init = 0 ) with(c) { counter = init; }

int inc( AtomicCnt & mutex c, int inc = 1 ) with(c) { return counter += inc; }

int dec( AtomicCnt & mutex c, int dec = 1 ) with(c) { return counter -= dec; }

forall( ostype & | ostream( ostype ) ) { // print any stream

ostype & ?|?( ostype & os, AtomicCnt c ) { return os | c.counter; }

void ?|?( ostype & os, AtomicCnt c ) { (ostype &)(os | c.counter); ends( os ); }

}

AtomicCnt global; // shared

thread MyThread {};

void main( MyThread & ) {

for ( i; 100_000 ) {

inc( global );

dec( global );

}

}

int main() {

enum { Threads = 4 };

processor p[Threads - 1]; // + starting processor

{

MyThread t[Threads];

}

sout | global; // print 0

}

Figure 14: Atomic-Counter Monitor

and articles comparing inheritance and composition (or is-a versus has-a relationships), so we will not go into more1

detail here (Venners, 1998) (Pike, Go at Google: Language Design in the Service of Software Engineering , 2012).2

Overloading in C

A

is very similar to overloading in C++, with the exception of the additional use, in C

A

, of the3

return type to differentiate between overloaded functions. References and exceptions in C

A

are heavily based on the4

same features from C++. The mechanism for interoperating with C code in C

A

is also borrowed from C++.5

Both C

A

and C++ provide generics, and the syntax is quite similar. The key difference between the two, is that in6

C++ templates are expanded at compile time for each type for which the template is instantiated, while in C

A

, function7

pointers are used to make the generic fully compilable. This means that a generic function can be defined in a compiled8

library, and still be used as expected from source.9

29.2 Go10

Go, also commonly referred to as golang, is a programming language developed at Google in 2007 [19]. It is a11

statically typed language with syntax loosely derived from that of C, adding garbage collection, type safety, some12

structural typing capabilities, additional built-in types such as variable-length arrays and key-value maps, and a large13

standard library. (Wikipedia)14

Go and C

A

differ significantly in syntax and implementation, but the underlying core concepts of the two languages15

are aligned. Both Go and C

A

use composition and interfaces as opposed to inheritance to enable encapsulation and16

abstraction. Both languages (along with their tooling ecosystem) provide a simple packaging mechanism for building17

units of code for easy sharing and reuse. Both languages also include built-in light weight, user level threading18

concurrency features that attempt to simplify the effort and thought process required for writing parallel programs19

while maintaining high performance.20

Go has a significant runtime which handles the scheduling of its light weight threads, and performs garbage col-21

lection, among other tasks. C

A

uses a cooperative scheduling algorithm for its tasks, and uses automatic reference22



72 29.3 Rust

#include <fstream.hfa>

#include <kernel>

#include <stdlib>

#include <thread>

thread First { signal_once * lock; };

thread Second { signal_once * lock; };

void ?{}( First * this, signal_once* lock ) { this->lock = lock; }

void ?{}( Second * this, signal_once* lock ) { this->lock = lock; }

void main( First * this ) {

for ( int i = 0; i < 10; i += 1 ) {

sout | "First : Suspend No." | i + 1;

yield();

}

signal( this->lock );

}

void main( Second * this ) {

wait( this->lock );

for ( int i = 0; i < 10; i += 1 ) {

sout | "Second : Suspend No." | i + 1;

yield();

}

}

int main( void ) {

signal_once lock;

sout | "User main begin";

{

processor p;

{

First f = { &lock };

Second s = { &lock };

}

}

sout | "User main end";

}

Figure 15: Simple Threads

counting to enable advanced memory management without garbage collection. This results in Go requiring significant1

overhead to interface with C libraries while C

A

has no overhead.2

29.3 Rust3

Rust is a general-purpose, multi-paradigm, compiled programming language developed by Mozilla Research. It is4

designed to be a "safe, concurrent, practical language", supporting pure-functional, concurrent-actor[dubious . dis-5

cuss][citation needed], imperative-procedural, and object-oriented styles.6

The primary focus of Rust is in safety, especially in concurrent programs. To enforce a high level of safety, Rust7

has added ownership as a core feature of the language to guarantee memory safety. This safety comes at the cost of a8

difficult learning curve, a change in the thought model of the program, and often some runtime overhead.9

Aside from those key differences, Rust and C

A

also have several similarities. Both languages support no overhead10

interoperability with C and have minimal runtimes. Both languages support inheritance and polymorphism through11

the use of interfaces (traits).12



29.4 D 73

29.4 D1

The D programming language is an object-oriented, imperative, multi-paradigm system programming language cre-2

ated by Walter Bright of Digital Mars and released in 2001. [.] Though it originated as a re-engineering of C++, D3

is a distinct language, having redesigned some core C++ features while also taking inspiration from other languages,4

notably Java, Python, Ruby, C#, and Eiffel.5

D and C

A

both start with C and add productivity features. The obvious difference is that D uses classes and6

inheritance while C

A

uses composition and interfaces. D is closer to C

A

than C++ since it is limited to single inheritance7

and also supports interfaces. Like C++, and unlike C

A

, D uses garbage collection and has compile-time expanded8

templates. D does not have any built-in concurrency constructs in the language, though it does have a standard library9

for concurrency which includes the low-level primitives for concurrency.10

A Syntax Ambiguities11

C has a number of syntax ambiguities, which are resolved by taking the longest sequence of overlapping characters12

that constitute a token. For example, the program fragment x+++++y is parsed as x ++ ++ + y because operator tokens13

++ and + overlap. Unfortunately, the longest sequence violates a constraint on increment operators, even though the14

parse x ++ + ++ y might yield a correct expression. Hence, C programmers are aware that spaces have to added to15

disambiguate certain syntactic cases.16

In C

A

, there are ambiguous cases with dereference and operator identifiers, e.g., int *?*?(), where the string *?*?17

can be interpreted as:18

*? *? // dereference operator, dereference operator19

* ?*? // dereference, multiplication operator20

By default, the first interpretation is selected, which does not yield a meaningful parse. Therefore, C

A

does a lexical21

look-ahead for the second case, and backtracks to return the leading unary operator and reparses the trailing operator22

identifier. Otherwise a space is needed between the unary operator and operator identifier to disambiguate this common23

case.24

A similar issue occurs with the dereference, *?(...), and routine-call, ?()(...) identifiers. The ambiguity occurs when25

the deference operator has no parameters:26

*?() ... ;27

*?() ...(...) ;28

requiring arbitrary whitespace look-ahead for the routine-call parameter-list to disambiguate. However, the dereference29

operator must have a parameter/argument to dereference *?(...). Hence, always interpreting the string *?() as * ?() does30

not preclude any meaningful program.31

The remaining cases are with the increment/decrement operators and conditional expression, e.g.:32

i++? ...(...);33

i?++ ...(...);34

requiring arbitrary whitespace look-ahead for the operator parameter-list, even though that interpretation is an incorrect35

expression (juxtaposed identifiers). Therefore, it is necessary to disambiguate these cases with a space:36

i++ ? i : 0;37

i? ++i : 0;38

B C Incompatibles39

The following incompatibles exist between C

A

and C, and are similar to Annex C for C++ [22].40

1. Change: add new keywords41

New keywords are added to C

A

(see Section C, p. 76).42

Rationale: keywords added to implement new semantics of C

A

.43

Effect on original feature: change to semantics of well-defined feature.44

Any C11 programs using these keywords as identifiers are invalid C

A

programs.45

Difficulty of converting: keyword clashes are accommodated by syntactic transformations using the C

A

back-46

quote escape-mechanism (see Section 6, p. 5).47

How widely used: clashes among new C

A

keywords and existing identifiers are rare.48



74 B C Incompatibles

2. Change: drop K&R C declarations1

K&R declarations allow an implicit base-type of int, if no type is specified, plus an alternate syntax for2

declaring parameters. e.g.:3

x; // int x4

*y; // int * y5

f( p1, p2 ); // int f( int p1, int p2 );6

g( p1, p2 ) int p1, p2; // int g( int p1, int p2 );7

C

A

continues to support K&R routine definitions:8

f( a, b, c ) // default int return9

int a, b; char c; // K&R parameter declarations10

{11

...12

}13

Rationale: dropped from C11 standard.17
14

Effect on original feature: original feature is deprecated.15

Any old C programs using these K&R declarations are invalid C

A

programs.16

Difficulty of converting: trivial to convert to C

A

.17

How widely used: existing usages are rare.18

3. Change: type of character literal int to char to allow more intuitive overloading:19

int rtn( int i );20

int rtn( char c );21

rtn( 'x' ); // programmer expects 2nd rtn to be called22

Rationale: it is more intuitive for the call to rtn to match the second version of definition of rtn rather than the23

first. In particular, output of char variable now print a character rather than the decimal ASCII value of the24

character.25

sout | 'x' | " " | (int)'x';26

x 12027

Having to cast 'x' to char is non-intuitive.28

Effect on original feature: change to semantics of well-defined feature that depend on:29

sizeof( 'x' ) == sizeof( int )30

no long work the same in C

A

programs.31

Difficulty of converting: simple32

How widely used: programs that depend upon sizeof( 'x' ) are rare and can be changed to sizeof(char).33

4. Change: make string literals const:34

char * p = "abc"; // valid in C, deprecated in C

A

35

char * q = expr ? "abc" : "de"; // valid in C, invalid in C

A

36

The type of a string literal is changed from [] char to const [] char. Similarly, the type of a wide string literal37

is changed from [] wchar_t to const [] wchar_t.38

Rationale: This change is a safety issue:39

char * p = "abc";40

p[0] = 'w'; // segment fault or change constant literal41

The same problem occurs when passing a string literal to a routine that changes its argument.42

Effect on original feature: change to semantics of well-defined feature.43

Difficulty of converting: simple syntactic transformation, because string literals can be converted to char *.44

How widely used: programs that have a legitimate reason to treat string literals as pointers to potentially mod-45

ifiable memory are rare.46

5. Change: remove tentative definitions, which only occurs at file scope:47

17At least one type specifier shall be given in the declaration specifiers in each declaration, and in the specifier-qualifier list in each structure declaration
and type name [21, § 6.7.2(2)]



B C Incompatibles 75

int i; // forward definition1

int *j = &i; // forward reference, valid in C, invalid in C

A

2

int i = 0; // definition3

is valid in C, and invalid in C

A

because duplicate overloaded object definitions at the same scope level4

are disallowed. This change makes it impossible to define mutually referential file-local static objects, if5

initializers are restricted to the syntactic forms of C. For example,6

struct X { int i; struct X *next; };7

static struct X a; // forward definition8

static struct X b = { 0, &a }; // forward reference, valid in C, invalid in C

A

9

static struct X a = { 1, &b }; // definition10

Rationale: avoids having different initialization rules for builtin types and user-defined types.11

Effect on original feature: change to semantics of well-defined feature.12

Difficulty of converting: the initializer for one of a set of mutually-referential file-local static objects must13

invoke a routine call to achieve the initialization.14

How widely used: seldom15

6. Change: have struct introduce a scope for nested types:16

enum Colour { R, G, B, Y, C, M };17

struct Person {18

enum Colour { R, G, B }; // nested type19

struct Face { // nested type20

Colour Eyes, Hair; // type defined outside (1 level)21

};22

.Colour shirt; // type defined outside (top level)23

Colour pants; // type defined same level24

Face looks[10]; // type defined same level25

};26

Colour c = R; // type/enum defined same level27

Person.Colour pc = Person.R; // type/enum defined inside28

Person.Face pretty; // type defined inside29

In C, the name of the nested types belongs to the same scope as the name of the outermost enclosing structure,30

i.e., the nested types are hoisted to the scope of the outer-most type, which is not useful and confusing. C

A

31

is C incompatible on this issue, and provides semantics similar to C++. Nested types are not hoisted and can32

be referenced using the field selection operator “.”, unlike the C++ scope-resolution operator “::”.33

Rationale: struct scope is crucial to C

A

as an information structuring and hiding mechanism.34

Effect on original feature: change to semantics of well-defined feature.35

Difficulty of converting: Semantic transformation.36

How widely used: C programs rarely have nest types because they are equivalent to the hoisted version.37

7. Change: In C++, the name of a nested class is local to its enclosing class.38

Rationale: C++ classes have member functions which require that classes establish scopes.39

Difficulty of converting: Semantic transformation. To make the struct type name visible in the scope of the40

enclosing struct, the struct tag could be declared in the scope of the enclosing struct, before the enclosing41

struct is defined. Example:42

struct Y; // struct Y and struct X are at the same scope43

struct X {44

struct Y { /* ... */ } y;45

};46

All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of the47

enclosing struct could be exported to the scope of the enclosing struct. Note: this is a consequence of the48

difference in scope rules, which is documented in 3.3.49

How widely used: Seldom.50

8. Change: remove implicit conversion of void * to or from any T * pointer:51

void foo() {52



76 E Standard Library

int * b = malloc( sizeof(int) ); // implicitly convert void * to int *1

char * c = b; // implicitly convert int * to void *, and then void * to char *2

}3

Rationale: increase type safety4

Effect on original feature: deletion of semantically well-defined feature.5

Difficulty of converting: requires adding a cast (see Section E.1 for better alternatives):6

int * b = (int *)malloc( sizeof(int) );7

char * c = (char *)b;8

How widely used: Significant. Some C translators already give a warning if the cast is not used.9

9. Change: Types must be declared in declarations, not in expressions In C, a sizeof expression or cast expression10

may create a new type. For example,11

p = (void*)(struct x {int i;} *)0;12

declares a new type, struct x .13

Rationale: This prohibition helps to clarify the location of declarations in the source code.14

Effect on original feature: Deletion of a semantically welldefined feature.15

Difficulty of converting: Syntactic transformation.16

How widely used: Seldom.17

10. Change: comma expression is disallowed as subscript18

Rationale: safety issue to prevent subscripting error for multidimensional arrays: x[i,j] instead of x[i][j], and this19

syntactic form then taken by C

A

for new style arrays.20

Effect on original feature: change to semantics of well-defined feature.21

Difficulty of converting: semantic transformation of x[i,j] to x[(i,j)]22

How widely used: Seldom.23

C C

A

Keywords24

C

A

introduces the following new keywords, which cannot be used as identifiers.25

basetypeof, choose, coroutine, disable, enable, exception, fallthrough, fallthrough, finally, fixup, forall,generator,26

int128, monitor, mutex, one_t, report, suspend, throw, throwResume, trait, try, virtual, waitfor, when, with, zero_t27

C

A

introduces the following new quasi-keywords, which can be used as identifiers.28

catch, catchResume, finally, fixup, or, timeout29

D Standard Headers30

C11 prescribes the following standard header-files [21, § 7.1.2]:31

assert.h, complex.h, ctype.h, errno.h, fenv.h, float.h, inttypes.h, iso646.h, limits.h, locale.h, math.h, setjmp.h, signal.h,32

stdalign.h, stdarg.h, stdatomic.h, stdbool.h, stddef.h, stdint.h, stdio.h, stdlib.h, stdnoreturn.h, string.h, tgmath.h, threads.h,33

time.h, uchar.h, wchar.h, wctype.h34

and C

A

adds to this list:35

gmp.h, malloc.h, unistd.h36

For the prescribed head-files, C

A

uses header interposition to wraps these includes in an extern "C"; hence, names37

in these include files are not mangled (see Section 4, p. 2). All other C header files must be explicitly wrapped in38

extern "C" to prevent name mangling. This approach is different from C++ where the name-mangling issue is handled39

internally in C header-files through checks for preprocessor variable _ _cplusplus, which adds appropriate extern "C"40

qualifiers.41

E Standard Library42

The C

A

standard-library extends existing C library routines by adding new function, wrapping existing explicitly-43

polymorphic C routines into implicitly-polymorphic versions, and adding new C

A

extensions.44



E.1 Dynamic Storage-Management 77

Table 3: Allocation Routines versus Storage-Management Properties

routine fill alignment scale resize

C malloc no no no no
calloc yes (0 only) no yes no
realloc copy no no yes
reallocarray copy no yes yes
memalign no yes no no
aligned_alloca no yes no no
posix_memalign no yes no no
valloc no yes (page size) no no
pvallocb no yes (page size) no no

C

A

cmemalign yes (0 only) yes yes no
resize no copy yes no yes
realloc copy yes no yes
allocc yes yes yes yes

aSame as memalign but size is an integral multiple of alignment.
bSame as valloc but rounds size to multiple of page size.
cMultiple overloads with different parameters.

E.1 Dynamic Storage-Management1

Dynamic storage-management in C is based on explicit allocation and deallocation (malloc/free). Programmer’s must2

manage all allocated storage via its address (pointer) and subsequently deallocate the storage via this address. Storage3

that is not deallocated becomes inaccessible, called a memory leak, which can only be detected at program termination.4

Storage freed twice is an error, called a duplicate free, which can sometimes be detected. Storage used after it is5

deallocated is an error, called using a dangling pointer, which can sometimes be detected.6

E.1.1 C Interface7

C dynamic storage-management provides the following properties.8

fill storage after an allocation with a specified character or value.9

align an allocation on a specified memory boundary, e.g., an address multiple of 64 or 128 for cache-line purposes.10

scale an allocation size to the specified number of array elements. An array may be filled, resized, or aligned.11

resize an existing allocation to decreased or increased its size. In either direction, new storage may or may not be12

allocated, but if there is a new allocation, as much data from the existing allocation is copied into the new allocation.13

When new storage is allocated, it may be aligned and storage after copied data may be filled.14

Table 3 shows different combinations of storage-management properties provided by the C and C

A

allocation routines.15

E.1.2 C

A

Interface16

C

A

dynamic memory management:17

1. extends type safety of all allocation routines by using the left-hand assignment type to determine the allocation size18

and alignment, and return a matching type for the new storage, which removes many common allocation errors.19

int * ip = (int *)malloc( sizeof(int) ); // C20

int * ip = malloc(); // C

A

type-safe call of C malloc21

int * ip = calloc(); // C

A

type-safe call of C calloc22

struct _ _attribute_ _(( aligned(128) )) spinlock { ... }; // cache alignment23

spinlock * slp = malloc(); // correct size, alignment, and return type24

Here, the alignment of the ip storage is 16 (default) and 128 for slp.25

2. introduces the notion of sticky properties used in resizing. All initial allocation properties are remembered and26

maintained for use should resize require new storage. For example, the initial alignment and fill properties in the27

initial allocation28

struct _ _attribute_ _(( aligned(4096) )) S { ... };29

S * sp = calloc( 10 ); // align 4K and zero fill30



78 E.1 Dynamic Storage-Management

sp = reallocarray( sp, 100 ); // preserve 4K alignment and zero fill new storage1

are preserved in the resize so the new storage has the same alignment and extra storage after the data copy is zero2

filled. Without sticky properties it is dangerous to resize, resulting in the C idiom of manually performing the3

reallocation to maintain correctness, which is error prone.4

3. provides resizing without data copying, which is useful to repurpose an existing block of storage, rather than5

freeing the old storage and performing a new allocation. A resize can take advantage of unused storage after the6

data to preventing a free/reallocation step altogether.7

4. provides free/delete functions that delete a variable number of allocations.8

int * ip = malloc(), * jp = malloc(), * kp = malloc();9

double * xp = malloc(), * yp = malloc(), * zp = malloc();10

free( ip, jp, kp, xp, yp, zp ); // multiple deallocations11

5. supports constructors for initialization of allocated storage and destructors for deallocation (like C++).12

struct S { int v; }; // default constructors13

void ∧?{}( S & ) { ... } // destructor14

S & sp = *new( 3 ); // allocate and call constructor15

sout | sp.v;16

delete( &sp ); // call destructor17

S * spa1 = anew( 10, 5 ), * spa2 = anew( 10, 8 ); // allocate array and call constructor for each array element18

for ( i; 10 ) sout | spa1[i].v | spa2[i].v | nonl; sout | nl;19

adelete( spa1, spa2 ); // call destructors on all array objects20

21

322

5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 823

Allocation routines new/anew allocate a variable/array and initialize storage using the allocated type’s constructor.24

Note, the matching deallocation routines delete/adelete. C++ only supports the default constructor for intializing25

array elements.26

S * sp = new S[10]{5}; // disallowed27

In addition, C
A

provides a new allocator interface to further increase orthogonality and usability of dynamic-28

memory allocation. This interface helps programmers in three ways.29

1. naming: C

A

regular and ttype polymorphism (similar to C++ variadic templates) is used to encapsulate a wide30

range of allocation functionality into a single routine name, so programmers do not have to remember multiple31

routine names for different kinds of dynamic allocations.32

2. named arguments: individual allocation properties are specified using postfix function call (see Section 15.3,33

p. 35), so programmers do not have to remember parameter positions in allocation calls.34

3. safe usage: like the C

A

’s C-interface, programmers do not have to specify object size or cast allocation results.35

The polymorphic functions36

T * alloc( ... );37

T * alloc( size_t dim, ... );38

are overloaded with a variable number of allocation properties. These allocation properties can be passed as named39

arguments when calling the alloc routine. A call without parameters returns an uninitialized dynamically allocated40

object of type T (malloc). A call with only the dimension (dim) parameter returns an uninitialized dynamically allocated41

array of objects with type T (aalloc). The variable number of arguments consist of allocation properties to specialize42

the allocation. The properties resize and realloc are associated with an existing allocation variable indicating how its43

storage is modified.44

The following allocation property functions may be combined and appear in any order as arguments to alloc,45

• T_align ? àlign( size_t alignment ) to align an allocation. The alignment parameter must be ≥ the default align-46

ment (libAlign() in C

A

) and a power of two, e.g., the following return a dynamic object and object array aligned47

on a 256 and 4096-byte boundary.48

int * i0 = alloc( 256 àlign ); sout | i0 | nl;49

int * i1 = alloc( 3, 4096 àlign ); for (i; 3 ) sout | &i1[i] | nonl; sout | nl;50

free( i0, i1 );51

52



E.1 Dynamic Storage-Management 79

0x555556569900 // 256 alignment1

0x55555656c000 0x5656c004 0x5656c008 // 4K array alignment2

• T_fill(T) ? fìll( /* various types */ ) to initialize storage. There are three ways to fill storage:3

1. A char fills every byte of each object.4

2. An object of the returned type fills each object.5

3. An object array pointer fills some or all of the corresponding object array.6

For example:7

1 int * i0 = alloc( 0n fìll ); sout | *i0 | nl; // 0n disambiguates 0p8

2 int * i1 = alloc( 5 fìll ); sout | *i1 | nl;9

3 int * i2 = alloc( '\xfe' fìll ); sout | hex( *i2 ) | nl;10

4 int * i3 = alloc( 5, 5 fìll ); for ( i; 5 ) sout | i3[i] | nonl; sout | nl;11

5 int * i4 = alloc( 5, 0xdeadbeefN fìll ); for ( i; 5 ) sout | hex( i4[i] ) | nonl; sout | nl;12

6 int * i5 = alloc( 5, i3 fìll ); for ( i; 5 ) sout | i5[i] | nonl; sout | nl; // completely fill from i313

7 int * i6 = alloc( 5, [i3, 3] fìll ); for ( i; 5 ) sout | i6[i] | nonl; sout | nl; // partial fill from i314

8 free( i0, i1, i2, i3, i4, i5, i6 );15

1 016

2 517

3 0xfefefefe18

4 5 5 5 5 519

5 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef20

6 5 5 5 5 521

7 5 5 5 -555819298 -555819298 // two undefined values22

Examples 1 to 3 fill an object with a value or characters. Examples 4 to 7 fill an array of objects with values,23

another array, or part of an array.24

• S_resize(T) ? r̀esize( void * oaddr ) used to resize, realign, and fill, where the old object data is not copied to the25

new object. The old object type may be different from the new object type, since the values are not used. For26

example:27

1 int * ip = alloc( 5 fìll ); sout | ip | *ip;28

2 ip = alloc( ip r̀esize, 256 àlign, 7 fìll ); sout | ip | *ip;29

3 double * dp = alloc( ip r̀esize, 4096 àlign, 13.5 fìll ); sout | dp | *dp;30

4 free( dp ); // DO NOT FREE ip AS ITS STORAGE IS MOVED TO dp31

1 0x555555580a80 532

2 0x555555581100 733

3 0x555555587000 13.534

Examples 2 to 3 change the alignment, fill, and size for the initial storage of i.35

1 int * ia = alloc( 5, 5 fìll ); sout | ia | nonl; for ( i; 5 ) sout | ia[i] | nonl; sout | nl;36

2 ia = alloc( 10, ia r̀esize, 7 fìll ); sout | ia | nonl; for ( i; 10 ) sout | ia[i] | nonl; sout | nl;37

3 ia = alloc( 5, ia r̀esize, 512 àlign, 13 fìll ); sout | ia | nonl; for ( i; 5 ) sout | ia[i] | nonl; sout | nl;;38

4 ia = alloc( 3, ia r̀esize, 4096 àlign, 2 fìll ); for ( i; 3 ) sout | &ia[i] | ia[i] | nonl; sout | nl;39

5 free( ia );40

1 0x55555656d540 5 5 5 5 541

2 0x55555656d480 7 7 7 7 7 7 7 7 7 742

3 0x55555656fe00 13 13 13 13 1343

4 0x555556570000 2 0x555556570004 2 0x555556570008 244

Examples 2 to 4 change the array size, alignment, and fill initializes all storage because no data is copied.45

• S_realloc(T) ? r̀ealloc( T * a )) used to resize, realign, and fill, where the old object data is copied to the new46

object. The old object type must be the same as the new object type, since the value is used. Note, for fill, only47

the extra space after copying the data from the old object is filled with the given parameter. For example:48

1 int * ip = alloc( 5 fìll ); sout | ip | *ip;49

2 ip = alloc( ip r̀ealloc, 256 àlign ); sout | ip | *ip;50

3 ip = alloc( ip r̀ealloc, 4096 àlign, 13 fìll ); sout | ip | *ip;51

4 free( ip );52



80 E.1 Dynamic Storage-Management

1 0x55555556d5c0 51

2 0x555555570000 52

3 0x555555571000 53

Examples 2 to 3 change the alignment for the initial storage of i. The 13 fìll in example 3 does nothing because4

no new storage is added.5

1 int * ia = alloc( 5, 5 fìll ); sout | ia | nonl; for ( i; 5 ) sout | ia[i] | nonl; sout | nl;6

2 ia = alloc( 10, ia r̀ealloc, 7 fìll ); sout | ia | nonl; for ( i; 10 ) sout | ia[i] | nonl; sout | nl;7

3 ia = alloc( 5, ia r̀ealloc, 512 àlign, 13 fìll ); sout | ia | nonl; for ( i; 5 ) sout | ia[i] | nonl; sout | nl;;8

4 ia = alloc( 3, ia r̀ealloc, 4096 àlign, 2 fìll ); for ( i; 3 ) sout | &ia[i] | ia[i] | nonl; sout | nl;9

5 free( ia );10

1 0x55555656d540 5 5 5 5 511

2 0x55555656d480 7 7 7 7 7 7 7 7 7 712

3 0x555556570e00 5 5 5 5 513

4 0x5555556571000 5 0x555556571004 5 0x555556571008 514

Examples 2 to 4 change the array size, alignment, and fill does no initialization after the copied data, as no new15

storage is added.16

extern "C" {17

// New C allocation operations.18

void * aalloc( size_t dim, size_t elemSize );19

void * resize( void * oaddr, size_t size );20

void * amemalign( size_t align, size_t dim, size_t elemSize );21

void * cmemalign( size_t align, size_t dim, size_t elemSize );22

size_t malloc_alignment( void * addr );23

bool malloc_zero_fill( void * addr );24

size_t malloc_size( void * addr );25

int malloc_stats_fd( int fd );26

size_t malloc_expansion(); // heap expansion size (bytes)27

size_t malloc_mmap_start(); // crossover allocation size from sbrk to mmap28

size_t malloc_unfreed(); // heap unfreed size (bytes)29

void malloc_stats_clear(); // clear heap statistics30

}31

32

// New allocation operations.33

void * resize( void * oaddr, size_t alignment, size_t size );34

void * realloc( void * oaddr, size_t alignment, size_t size );35

void * reallocarray( void * oaddr, size_t nalign, size_t dim, size_t elemSize );36

37

forall( T & | sized(T) ) {38

// C

A

safe equivalents, i.e., implicit size specification, eliminate return-type cast39

T * malloc( void );40

T * aalloc( size_t dim );41

T * calloc( size_t dim );42

T * resize( T * ptr, size_t size );43

T * resize( T * ptr, size_t alignment, size_t size );44

T * realloc( T * ptr, size_t size );45

T * realloc( T * ptr, size_t alignment, size_t size );46

T * reallocarray( T * ptr, size_t dim );47

T * reallocarray( T * ptr, size_t alignment, size_t dim );48

T * memalign( size_t align );49

T * amemalign( size_t align, size_t dim );50

T * cmemalign( size_t align, size_t dim );51

T * aligned_alloc( size_t align );52

int posix_memalign( T ** ptr, size_t align );53

T * valloc( void );54

T * pvalloc( void );55

56

// C

A

safe general allocation, fill, resize, alignment, array57



E.2 Memory Set and Copy 81

T * alloc( ... ); // variable, T size1

T * alloc( size_t dim, ... );2

T_align ? àlign( size_t alignment );3

T_fill(T) ? fìll( /* various types */ );4

T_resize ? r̀esize( void * oaddr );5

T_realloc ? r̀ealloc( void * oaddr ));6

}7

8

forall( T &, List ... ) void free( T * ptr, ... ) // deallocation list9

10

// C

A

allocation/deallocation and constructor/destructor, non-array types11

forall( T &, Parms ... | { void ?{}( T &, Parms ); } ) T * new( Parms ... );12

forall( T &, List ... | { void ∧?{}( T & ); void delete( List ... ); } );13

// C

A

allocation/deallocation and constructor/destructor, array types14

forall( T & | sized(T), Parms ... | { void ?{}( T &, Parms ); } ) T * anew( size_t dim, Parms ... );15

forall( T & | sized(T) | { void ∧?{}( T & ); }, List ... } ) void adelete( T arr[], List ... );16

E.2 Memory Set and Copy17

Like safe memory allocation, C

A

provides safe block initialization and copy. While objects should be initialized/copied18

with constructors/assignment, block operations can be very performant. In certain cases the compiler generates block19

copy operations, such as assigning structures s = t, however C arrays cannot be assigned.20

21

struct S { int i, j, k; };22

S s, t, *sp = &s, * tp = &t, sa[10], ta[10];23

C

A

C

memset( s, '\0' );

memset( sp, '\0' );

memcpy( s, t );

memcpy( sp, tp );

amemset( sa, '\0', 10 );

amemcpy( sa, ta, 10 );

memset( &s, '\0', sizeof(s) );

memset( sp, '\0', sizeof(s) );

memcpy( &s, &t, sizeof(s) );

memcpy( sp, tp, sizeof(s) );

memset( sa, '\0', sizeof(sa) );

memcpy( sa, ta, sizeof(sa) );

24

These operations provide uniformity between reference and pointer, so object dereferencing, ’&’, is unnecessary.25

static inline forall( T & | sized(T) ) {26

// CFA safe initialization/copy, i.e., implicit size specification, non-array types27

T * memset( T * dest, char fill ); // all combinations of pointer/reference28

T * memset( T & dest, char fill );29

30

T * memcpy( T * dest, const T * src ); // all combinations of pointer/reference31

T * memcpy( T & dest, const T & src );32

T * memcpy( T * dest, const T & src );33

T * memcpy( T & dest, const T * src );34

35

// CFA safe initialization/copy, i.e., implicit size specification, array types36

T * amemset( T dest[], char fill, size_t dim );37

T * amemcpy( T dest[], const T src[], size_t dim );38

}39

E.3 String to Value Conversion40

int ato( const char * ptr );41

unsigned int ato( const char * ptr );42

long int ato( const char * ptr );43

unsigned long int ato( const char * ptr );44

long long int ato( const char * ptr );45

unsigned long long int ato( const char * ptr );46



82 E.5 Absolute Value

float ato( const char * ptr );1

double ato( const char * ptr );2

long double ato( const char * ptr );3

float _Complex ato( const char * ptr );4

double _Complex ato( const char * ptr );5

long double _Complex ato( const char * ptr );6

7

int strto( const char * sptr, char ** eptr, int base );8

unsigned int strto( const char * sptr, char ** eptr, int base );9

long int strto( const char * sptr, char ** eptr, int base );10

unsigned long int strto( const char * sptr, char ** eptr, int base );11

long long int strto( const char * sptr, char ** eptr, int base );12

unsigned long long int strto( const char * sptr, char ** eptr, int base );13

float strto( const char * sptr, char ** eptr );14

double strto( const char * sptr, char ** eptr );15

long double strto( const char * sptr, char ** eptr );16

float _Complex strto( const char * sptr, char ** eptr );17

double _Complex strto( const char * sptr, char ** eptr );18

long double _Complex strto( const char * sptr, char ** eptr );19

E.4 Search / Sort20

forall( T | { int ?<?( T, T ); } ) // location21

T * bsearch( T key, const T * arr, size_t dim );22

23

forall( T | { int ?<?( T, T ); } ) // position24

unsigned int bsearch( T key, const T * arr, size_t dim );25

26

forall( T | { int ?<?( T, T ); } )27

void qsort( const T * arr, size_t dim );28

29

forall( E | { int ?<?( E, E ); } ) {30

E * bsearch( E key, const E * vals, size_t dim ); // location31

size_t bsearch( E key, const E * vals, size_t dim );// position32

E * bsearchl( E key, const E * vals, size_t dim );33

size_t bsearchl( E key, const E * vals, size_t dim );34

E * bsearchu( E key, const E * vals, size_t dim );35

size_t bsearchu( E key, const E * vals, size_t dim );36

}37

38

forall( K, E | { int ?<?( K, K ); K getKey( const E & ); } ) {39

E * bsearch( K key, const E * vals, size_t dim );40

size_t bsearch( K key, const E * vals, size_t dim );41

E * bsearchl( K key, const E * vals, size_t dim );42

size_t bsearchl( K key, const E * vals, size_t dim );43

E * bsearchu( K key, const E * vals, size_t dim );44

size_t bsearchu( K key, const E * vals, size_t dim );45

}46

47

forall( E | { int ?<?( E, E ); } ) {48

void qsort( E * vals, size_t dim );49

}50

E.5 Absolute Value51

unsigned char abs( signed char );52

int abs( int );53

unsigned long int abs( long int );54

unsigned long long int abs( long long int );55

float abs( float );56



E.6 C Random Numbers 83

double abs( double );1

long double abs( long double );2

float abs( float _Complex );3

double abs( double _Complex );4

long double abs( long double _Complex );5

forall( T | { void ?{}( T *, zero_t ); int ?<?( T, T ); T -?( T ); } )6

T abs( T );7

E.6 C Random Numbers8

void srandom( unsigned int seed );9

char random( void );10

char random( char u ); // [0,u)11

char random( char l, char u ); // [l,u]12

int random( void );13

int random( int u ); // [0,u)14

int random( int l, int u ); // [l,u]15

unsigned int random( void );16

unsigned int random( unsigned int u ); // [0,u)17

unsigned int random( unsigned int l, unsigned int u ); // [l,u]18

long int random( void );19

long int random( long int u ); // [0,u)20

long int random( long int l, long int u ); // [l,u]21

unsigned long int random( void );22

unsigned long int random( unsigned long int u ); // [0,u)23

unsigned long int random( unsigned long int l, unsigned long int u ); // [l,u]24

float random( void ); // [0.0, 1.0)25

double random( void ); // [0.0, 1.0)26

float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i27

double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i28

long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i29

E.7 Algorithms30

forall( T | { int ?<?( T, T ); } ) T min( T t1, T t2 );31

forall( T | { int ?>?( T, T ); } ) T max( T t1, T t2 );32

forall( T | { T min( T, T ); T max( T, T ); } ) T clamp( T value, T min_val, T max_val );33

forall( T ) void swap( T * t1, T * t2 );34

F Math Library35

The C

A

math-library wraps explicitly-polymorphic C math-routines into implicitly-polymorphic versions.36

F.1 General37

float ?%?( float, float );38

float fmod( float, float );39

double ?%?( double, double );40

double fmod( double, double );41

long double ?%?( long double, long double );42

long double fmod( long double, long double );43

44

float remainder( float, float );45

double remainder( double, double );46

long double remainder( long double, long double );47

48

float remquo( float, float, int * );49

double remquo( double, double, int * );50

long double remquo( long double, long double, int * );51

[ int, float ] remquo( float, float );52



84 F.3 Logarithm

[ int, double ] remquo( double, double );1

[ int, long double ] remquo( long double, long double );2

3

[ int, float ] div( float, float );4

[ int, double ] div( double, double );5

[ int, long double ] div( long double, long double );6

7

float fma( float, float, float );8

double fma( double, double, double );9

long double fma( long double, long double, long double );10

11

float fdim( float, float );12

double fdim( double, double );13

long double fdim( long double, long double );14

15

float nan( const char * );16

double nan( const char * );17

long double nan( const char * );18

F.2 Exponential19

float exp( float );20

double exp( double );21

long double exp( long double );22

float _Complex exp( float _Complex );23

double _Complex exp( double _Complex );24

long double _Complex exp( long double _Complex );25

26

float exp2( float );27

double exp2( double );28

long double exp2( long double );29

// float _Complex exp2( float _Complex );30

// double _Complex exp2( double _Complex );31

// long double _Complex exp2( long double _Complex );32

33

float expm1( float );34

double expm1( double );35

long double expm1( long double );36

37

float pow( float, float );38

double pow( double, double );39

long double pow( long double, long double );40

float _Complex pow( float _Complex, float _Complex );41

double _Complex pow( double _Complex, double _Complex );42

long double _Complex pow( long double _Complex, long double _Complex );43

F.3 Logarithm44

float log( float );45

double log( double );46

long double log( long double );47

float _Complex log( float _Complex );48

double _Complex log( double _Complex );49

long double _Complex log( long double _Complex );50

51

int log2( unsigned int );52

long int log2( unsigned long int );53

long long int log2( unsigned long long int )54

float log2( float );55

double log2( double );56



F.4 Trigonometric 85

long double log2( long double );1

// float _Complex log2( float _Complex );2

// double _Complex log2( double _Complex );3

// long double _Complex log2( long double _Complex );4

5

float log10( float );6

double log10( double );7

long double log10( long double );8

// float _Complex log10( float _Complex );9

// double _Complex log10( double _Complex );10

// long double _Complex log10( long double _Complex );11

12

float log1p( float );13

double log1p( double );14

long double log1p( long double );15

16

int ilogb( float );17

int ilogb( double );18

int ilogb( long double );19

20

float logb( float );21

double logb( double );22

long double logb( long double );23

24

float sqrt( float );25

double sqrt( double );26

long double sqrt( long double );27

float _Complex sqrt( float _Complex );28

double _Complex sqrt( double _Complex );29

long double _Complex sqrt( long double _Complex );30

31

float cbrt( float );32

double cbrt( double );33

long double cbrt( long double );34

35

float hypot( float, float );36

double hypot( double, double );37

long double hypot( long double, long double );38

F.4 Trigonometric39

float sin( float );40

double sin( double );41

long double sin( long double );42

float _Complex sin( float _Complex );43

double _Complex sin( double _Complex );44

long double _Complex sin( long double _Complex );45

46

float cos( float );47

double cos( double );48

long double cos( long double );49

float _Complex cos( float _Complex );50

double _Complex cos( double _Complex );51

long double _Complex cos( long double _Complex );52

53

float tan( float );54

double tan( double );55

long double tan( long double );56

float _Complex tan( float _Complex );57

double _Complex tan( double _Complex );58



86 F.5 Hyperbolic

long double _Complex tan( long double _Complex );1

2

float asin( float );3

double asin( double );4

long double asin( long double );5

float _Complex asin( float _Complex );6

double _Complex asin( double _Complex );7

long double _Complex asin( long double _Complex );8

9

float acos( float );10

double acos( double );11

long double acos( long double );12

float _Complex acos( float _Complex );13

double _Complex acos( double _Complex );14

long double _Complex acos( long double _Complex );15

16

float atan( float );17

double atan( double );18

long double atan( long double );19

float _Complex atan( float _Complex );20

double _Complex atan( double _Complex );21

long double _Complex atan( long double _Complex );22

23

float atan2( float, float );24

double atan2( double, double );25

long double atan2( long double, long double );26

27

float atan( float, float ); // alternative name for atan228

double atan( double, double );29

long double atan( long double, long double );30

F.5 Hyperbolic31

float sinh( float );32

double sinh( double );33

long double sinh( long double );34

float _Complex sinh( float _Complex );35

double _Complex sinh( double _Complex );36

long double _Complex sinh( long double _Complex );37

38

float cosh( float );39

double cosh( double );40

long double cosh( long double );41

float _Complex cosh( float _Complex );42

double _Complex cosh( double _Complex );43

long double _Complex cosh( long double _Complex );44

45

float tanh( float );46

double tanh( double );47

long double tanh( long double );48

float _Complex tanh( float _Complex );49

double _Complex tanh( double _Complex );50

long double _Complex tanh( long double _Complex );51

52

float asinh( float );53

double asinh( double );54

long double asinh( long double );55

float _Complex asinh( float _Complex );56

double _Complex asinh( double _Complex );57

long double _Complex asinh( long double _Complex );58



F.6 Error / Gamma 87

1

float acosh( float );2

double acosh( double );3

long double acosh( long double );4

float _Complex acosh( float _Complex );5

double _Complex acosh( double _Complex );6

long double _Complex acosh( long double _Complex );7

8

float atanh( float );9

double atanh( double );10

long double atanh( long double );11

float _Complex atanh( float _Complex );12

double _Complex atanh( double _Complex );13

long double _Complex atanh( long double _Complex );14

F.6 Error / Gamma15

float erf( float );16

double erf( double );17

long double erf( long double );18

float _Complex erf( float _Complex );19

double _Complex erf( double _Complex );20

long double _Complex erf( long double _Complex );21

22

float erfc( float );23

double erfc( double );24

long double erfc( long double );25

float _Complex erfc( float _Complex );26

double _Complex erfc( double _Complex );27

long double _Complex erfc( long double _Complex );28

29

float lgamma( float );30

double lgamma( double );31

long double lgamma( long double );32

float lgamma( float, int * );33

double lgamma( double, int * );34

long double lgamma( long double, int * );35

36

float tgamma( float );37

double tgamma( double );38

long double tgamma( long double );39

F.7 Nearest Integer40

// n / align * align41

signed char floor( signed char n, signed char align );42

unsigned char floor( unsigned char n, unsigned char align );43

short int floor( short int n, short int align );44

unsigned short int floor( unsigned short int n, unsigned short int align );45

int floor( int n, int align );46

unsigned int floor( unsigned int n, unsigned int align );47

long int floor( long int n, long int align );48

unsigned long int floor( unsigned long int n, unsigned long int align );49

long long int floor( long long int n, long long int align );50

unsigned long long int floor( unsigned long long int n, unsigned long long int align );51

52

// (n + (align - 1)) / align53

signed char ceiling_div( signed char n, char align );54

unsigned char ceiling_div( unsigned char n, unsigned char align );55

short int ceiling_div( short int n, short int align );56



88 F.7 Nearest Integer

unsigned short int ceiling_div( unsigned short int n, unsigned short int align );1

int ceiling_div( int n, int align );2

unsigned int ceiling_div( unsigned int n, unsigned int align );3

long int ceiling_div( long int n, long int align );4

unsigned long int ceiling_div( unsigned long int n, unsigned long int align );5

long long int ceiling_div( long long int n, long long int align );6

unsigned long long int ceiling_div( unsigned long long int n, unsigned long long int align );7

8

// floor( n + (n % align != 0 ? align - 1 : 0), align )9

signed char ceiling( signed char n, signed char align );10

unsigned char ceiling( unsigned char n, unsigned char align );11

short int ceiling( short int n, short int align );12

unsigned short int ceiling( unsigned short int n, unsigned short int align );13

int ceiling( int n, int align );14

unsigned int ceiling( unsigned int n, unsigned int align );15

long int ceiling( long int n, long int align );16

unsigned long int ceiling( unsigned long int n, unsigned long int align );17

long long int ceiling( long long int n, long long int align );18

unsigned long long int ceiling( unsigned long long int n, unsigned long long int align );19

20

float floor( float );21

double floor( double );22

long double floor( long double );23

24

float ceil( float );25

double ceil( double );26

long double ceil( long double );27

28

float trunc( float );29

double trunc( double );30

long double trunc( long double );31

32

float rint( float );33

long double rint( long double );34

long int rint( float );35

long int rint( double );36

long int rint( long double );37

long long int rint( float );38

long long int rint( double );39

long long int rint( long double );40

41

long int lrint( float );42

long int lrint( double );43

long int lrint( long double );44

long long int llrint( float );45

long long int llrint( double );46

long long int llrint( long double );47

48

float nearbyint( float );49

double nearbyint( double );50

long double nearbyint( long double );51

52

float round( float );53

long double round( long double );54

long int round( float );55

long int round( double );56

long int round( long double );57

long long int round( float );58

long long int round( double );59

long long int round( long double );60



F.8 Manipulation 89

1

long int lround( float );2

long int lround( double );3

long int lround( long double );4

long long int llround( float );5

long long int llround( double );6

long long int llround( long double );7

F.8 Manipulation8

float copysign( float, float );9

double copysign( double, double );10

long double copysign( long double, long double );11

12

float frexp( float, int * );13

double frexp( double, int * );14

long double frexp( long double, int * );15

16

float ldexp( float, int );17

double ldexp( double, int );18

long double ldexp( long double, int );19

20

[ float, float ] modf( float );21

float modf( float, float * );22

[ double, double ] modf( double );23

double modf( double, double * );24

[ long double, long double ] modf( long double );25

long double modf( long double, long double * );26

27

float nextafter( float, float );28

double nextafter( double, double );29

long double nextafter( long double, long double );30

31

float nexttoward( float, long double );32

double nexttoward( double, long double );33

long double nexttoward( long double, long double );34

35

float scalbn( float, int );36

double scalbn( double, int );37

long double scalbn( long double, int );38

39

float scalbln( float, long int );40

double scalbln( double, long int );41

long double scalbln( long double, long int );42

G Time Keeping43

G.1 Duration44

struct Duration {45

int64_t tn; // nanoseconds46

};47

48

void ?{}( Duration & dur );49

void ?{}( Duration & dur, zero_t );50

void ?{}( Duration & dur, timeval t )51

void ?{}( Duration & dur, timespec t )52

53

Duration ?=?( Duration & dur, zero_t );54

Duration ?=?( Duration & dur, timeval t )55



90 G.1 Duration

Duration ?=?( Duration & dur, timespec t )1

2

Duration +?( Duration rhs );3

Duration ?+?( Duration & lhs, Duration rhs );4

Duration ?+=?( Duration & lhs, Duration rhs );5

6

Duration -?( Duration rhs );7

Duration ?-?( Duration & lhs, Duration rhs );8

Duration ?-=?( Duration & lhs, Duration rhs );9

10

Duration ?*?( Duration lhs, int64_t rhs );11

Duration ?*?( int64_t lhs, Duration rhs );12

Duration ?*=?( Duration & lhs, int64_t rhs );13

14

int64_t ?/?( Duration lhs, Duration rhs );15

Duration ?/?( Duration lhs, int64_t rhs );16

Duration ?/=?( Duration & lhs, int64_t rhs );17

double div( Duration lhs, Duration rhs );18

19

Duration ?%?( Duration lhs, Duration rhs );20

Duration ?%=?( Duration & lhs, Duration rhs );21

22

bool ?==?( Duration lhs, zero_t );23

bool ?!=?( Duration lhs, zero_t );24

bool ?<? ( Duration lhs, zero_t );25

bool ?<=?( Duration lhs, zero_t );26

bool ?>? ( Duration lhs, zero_t );27

bool ?>=?( Duration lhs, zero_t );28

29

bool ?==?( Duration lhs, Duration rhs );30

bool ?!=?( Duration lhs, Duration rhs );31

bool ?<? ( Duration lhs, Duration rhs );32

bool ?<=?( Duration lhs, Duration rhs );33

bool ?>? ( Duration lhs, Duration rhs );34

bool ?>=?( Duration lhs, Duration rhs );35

36

Duration abs( Duration rhs );37

38

Duration ? ǹs( int64_t nsec );39

Duration ? ùs( int64_t usec );40

Duration ?
`

ms( int64_t msec );41

Duration ? s̀( int64_t sec );42

Duration ? s̀( double sec );43

Duration ?
`

m( int64_t min );44

Duration ?
`

m( double min );45

Duration ? h̀( int64_t hours );46

Duration ? h̀( double hours );47

Duration ? d̀( int64_t days );48

Duration ? d̀( double days );49

Duration ? ẁ( int64_t weeks );50

Duration ? ẁ( double weeks );51

52

int64_t ? ǹs( Duration dur );53

int64_t ? ùs( Duration dur );54

int64_t ? m̀s( Duration dur );55

int64_t ? s̀( Duration dur );56

int64_t ? m̀( Duration dur );57

int64_t ? h̀( Duration dur );58

int64_t ? d̀( Duration dur );59

int64_t ? ẁ( Duration dur );60



G.2 timeval 91

1

double ? d̀ns( Duration dur );2

double ? d̀us( Duration dur );3

double ? d̀ms( Duration dur );4

double ? d̀s( Duration dur );5

double ? d̀m( Duration dur );6

double ? d̀h( Duration dur );7

double ? d̀d( Duration dur );8

double ? d̀w( Duration dur );9

10

Duration max( Duration lhs, Duration rhs );11

Duration min( Duration lhs, Duration rhs );12

13

forall( ostype & | ostream( ostype ) ) ostype & ?|?( ostype & os, Duration dur );14

G.2 timeval15

void ?{}( timeval & t );16

void ?{}( timeval & t, zero_t );17

void ?{}( timeval & t, time_t sec, suseconds_ t usec );18

void ?{}( timeval & t, time_t sec );19

void ?{}( timeval & t, Time time );20

21

timeval ?=?( timeval & t, zero_t );22

timeval ?+?( timeval & lhs, timeval rhs );23

timeval ?-?( timeval & lhs, timeval rhs );24

bool ?==?( timeval lhs, timeval rhs );25

bool ?!=?( timeval lhs, timeval rhs );26

G.3 timespec27

void ?{}( timespec & t );28

void ?{}( timespec & t, zero_t );29

void ?{}( timespec & t, time_t sec, _ _syscall_slong_t nsec );30

void ?{}( timespec & t, time_t sec );31

void ?{}( timespec & t, Time time );32

33

timespec ?=?( timespec & t, zero_t );34

timespec ?+?( timespec & lhs, timespec rhs );35

timespec ?-?( timespec & lhs, timespec rhs );36

bool ?==?( timespec lhs, timespec rhs );37

bool ?!=?( timespec lhs, timespec rhs );38

G.4 itimerval39

void ?{}( itimerval & itv, Duration alarm );40

void ?{}( itimerval & itv, Duration alarm, Duration interval );41

G.5 Time42

struct Time {43

uint64_t tn; // nanoseconds since UNIX epoch44

};45

46

void ?{}( Time & time );47

void ?{}( Time & time, zero_t );48

void ?{}( Time & time, timeval t );49

void ?{}( Time & time, timespec t );50

51

Time ?=?( Time & time, zero_t );52

Time ?=?( Time & time, timeval t );53



92 H.2 Clock

Time ?=?( Time & time, timespec t );1

2

Time ?+?( Time & lhs, Duration rhs );3

Time ?+?( Duration lhs, Time rhs );4

Time ?+=?( Time & lhs, Duration rhs );5

6

Duration ?-?( Time lhs, Time rhs );7

Time ?-?( Time lhs, Duration rhs );8

Time ?-=?( Time & lhs, Duration rhs );9

bool ?==?( Time lhs, Time rhs );10

bool ?!=?( Time lhs, Time rhs );11

bool ?<?( Time lhs, Time rhs );12

bool ?<=?( Time lhs, Time rhs );13

bool ?>?( Time lhs, Time rhs );14

bool ?>=?( Time lhs, Time rhs );15

16

int64_t ? ǹs( Time t );17

18

char * yy_mm_dd( Time time, char * buf );19

char * ? ỳmd( Time time, char * buf ); // short form20

21

char * mm_dd_yy( Time time, char * buf );22

char * ? m̀dy( Time time, char * buf ); // short form23

24

char * dd_mm_yy( Time time, char * buf );25

char * ? d̀my( Time time, char * buf ); // short form26

27

size_t strftime( char * buf, size_t size, const char * fmt, Time time );28

29

forall( ostype & | ostream( ostype ) ) ostype & ?|?( ostype & os, Time time );30

H Clock31

H.1 C time32

char * ctime( time_t tp );33

char * ctime_r( time_t tp, char * buf );34

tm * gmtime( time_t tp );35

tm * gmtime_r( time_t tp, tm * result );36

tm * localtime( time_t tp );37

tm * localtime_r( time_t tp, tm * result );38

H.2 Clock39

struct Clock { // virtual clock40

Duration offset; // offset from computer real-time41

};42

43

void ?{}( Clock & clk ); // create no offset44

void ?{}( Clock & clk, Duration adj ); // create with offset45

void reset( Clock & clk, Duration adj ); // change offset46

47

Duration resolutionHi(); // clock resolution in nanoseconds (fine)48

Duration resolution(); // clock resolution without nanoseconds (coarse)49

50

Time timeHiRes(); // real time with nanoseconds51

Time time(); // real time without nanoseconds52

Time time( Clock & clk ); // real time for given clock53

Time ?()( Clock & clk ); // alternative syntax54

timeval time( Clock & clk ); // convert to C time format55



I Pseudo Random Number Generator 93

tm time( Clock & clk );1

Duration processor(); // non-monotonic duration of kernel thread2

Duration program(); // non-monotonic duration of program CPU3

Duration boot(); // monotonic duration since computer boot4

I Pseudo Random Number Generator5

Random numbers are values generated independently, i.e., new values do not depend on previous values (independent6

trials), e.g., lottery numbers, shuffled cards, dice roll, coin flip. While a primary goal of programming is computing7

values that are not random, random values are useful in simulation, cryptography, games, etc. A random-number gen-8

erator is an algorithm that computes independent values. If the algorithm uses deterministic computation (a predictable9

sequence of values), it generates pseudo random numbers versus true random numbers.10

All pseudo random-number generators (PRNG) involve some technique to scramble bits of a value, e.g., multi-11

plicative recurrence:12

rand = 33967 * (rand + 1063); // scramble bits13

Multiplication of large values adds new least-significant bits and drops most-significant bits.14

bits 63–32 (most) bits 31–0 (least)
0x0 0x3e8e36

0x5f 0x718c25e1

0xad3e 0x7b5f1dbe

0xbc3b 0xac69ff19

0x1070f 0x2d258dc6

15

By dropping bits 63–32, bits 31–0 become scrambled after each multiply. The least-significant bits appear random16

but the same bits are always generated given a fixed starting value, called the seed (value 0x3e8e36 above). Hence, if17

a program uses the same seed, the same sequence of pseudo-random values is generated from the PRNG. Often the18

seed is set to another random value like a program’s process identifier (getpid) or time when the program is run; hence,19

one random value bootstraps another. Finally, a PRNG usually generates a range of large values, e.g., [0, UINT_MAX],20

which are scaled using the modulus operator, e.g., prng() % 5 produces random values in the range 0–4.21

C

A

provides 32/64-bit sequential PRNG type only accessible by a single thread (not thread-safe) and a set of global22

routines and companion thread PRNG functions accessible by multiple threads without contention. To use the PRNG23

interface requires including stdlib.hfa.24

• The PRNG types for sequential programs, including coroutining, are:25

struct PRNG32 {}; // opaque type, no copy or assignment26

void ?{}( PRNG32 & prng, uint32_t seed ); // fixed seed27

void ?{}( PRNG32 & prng ); // random seed28

void set_seed( PRNG32 & prng, uint32_t seed ); // set seed29

uint32_t get_seed( PRNG32 & prng ); // get seed30

uint32_t prng( PRNG32 & prng ); // [0,UINT_MAX]31

uint32_t prng( PRNG32 & prng, uint32_t u ); // [0,u)32

uint32_t prng( PRNG32 & prng, uint32_t l, uint32_t u ); // [l,u]33

uint32_t calls( PRNG32 & prng ); // number of calls34

void copy( PRNG32 & dst, PRNG32 & src ); // checkpoint PRNG state35

struct PRNG64 {}; // opaque type, no copy or assignment36

void ?{}( PRNG64 & prng, uint64_t seed ); // fixed seed37

void ?{}( PRNG64 & prng ); // random seed38

void set_seed( PRNG64 & prng, uint64_t seed ); // set seed39

uint64_t get_seed( PRNG64 & prng ); // get seed40

uint64_t prng( PRNG64 & prng ); // [0,UINT_MAX]41

uint64_t prng( PRNG64 & prng, uint64_t u ); // [0,u)42

uint64_t prng( PRNG64 & prng, uint64_t l, uint64_t u ); // [l,u]43

uint64_t calls( PRNG64 & prng ); // number of calls44

void copy( PRNG64 & dst, PRNG64 & src ); // checkpoint PRNG state45

The type PRNG is aliased to PRNG64 on 64-bit architectures and PRNG32 on 32-bit architectures. A PRNG46

object is used to randomize behaviour or values during execution, e.g., in games, a character makes a random47



94 I Pseudo Random Number Generator

PRNG sprng1, sprng2; // select appropriate 32/64-bit PRNG

set_seed( sprng1, 1009 ); set_seed( sprng2, 1009 );

for ( 10 ) {

// Do not cascade prng calls because side-effect functions called in arbitrary order.

sout | nlOff | prng( sprng1 ); sout | prng( sprng1, 5 ); sout | prng( sprng1, 0, 5 ) | '\t';

sout | prng( sprng2 ); sout | prng( sprng2, 5 ); sout | prng( sprng2, 0, 5 ) | nlOn;

}

37301721 2 2

1681308562 1 3

290112364 3 2

1852700364 4 3

733221210 1 3

1775396023 2 3

123981445 2 3

2062557687 2 0

283934808 1 0

672325890 1 3

37301721 2 2

1681308562 1 3

290112364 3 2

1852700364 4 3

733221210 1 3

1775396023 2 3

123981445 2 3

2062557687 2 0

283934808 1 0

672325890 1 3

Figure 16: Sequential PRNG

move or an object takes on a random value. In this scenario, it is useful to have multiple PRNG objects, e.g.,1

one per player or object. However, sequential execution is still repeatable given the same starting seeds for all2

PRNGs. Figure 16 shows an example that creates two sequential PRNGs, sets both to the same seed (1009),3

and illustrates the three forms for generating random values, where both PRNGs generate the same sequence of4

values. Note, to prevent accidental PRNG copying, the copy constructor and assignment are hidden. To copy a5

PRNG for checkpointing, use the explicit copy member.6

• The PRNG global and companion thread functions are for concurrent programming, such as randomizing exe-7

cution in short-running programs, e.g., yield( prng() % 5 ).8

void set_seed( size_t seed ); // set global seed9

size_t get_seed(); // get global seed10

// SLOWER, global routines11

size_t prng( void ); // [0,UINT_MAX]12

size_t prng( size_t u ); // [0,u)13

size_t prng( size_t l, size_t u ); // [l,u]14

// FASTER, thread members15

size_t prng( thread$ & th ); // [0,UINT_MAX]16

size_t prng( thread$ & th, size_t u ); // [0,u)17

size_t prng( thread$ & th, size_t l, size_t u ); // [l,u]18

The only difference between the two sets of prng routines is performance.19

Because concurrent execution is non-deterministic, seeding the concurrent PRNG is less important, as20

repeatable execution is impossible. Hence, there is one system-wide PRNG (global seed) but each C

A

thread21

has its own non-contended PRNG state. If the global seed is set, threads start with this seed, until it is reset and22

then threads start with the reset seed. Hence, these threads generate the same sequence of random numbers from23

their specific starting seed. If the global seed is not set, threads start with a random seed, until the global seed24

is set. Hence, these threads generate different sequences of random numbers. If each thread needs its own seed,25

use a sequential PRNG in each thread. The slower prng global functions, i.e., without a thread argument, call26

active_thread internally to indirectly access the current thread’s PRNG state, while the faster prng functions, i.e.,27

with a thread argument, directly access the thread through the thread parameter. If a thread pointer is available,28

e.g., in thread main, eliminating the call to active_thread significantly reduces the cost of accessing the thread’s29

PRNG state. Figure 17 shows an example using the slower/faster concurrent PRNG in the program main and a30

thread.31



J Multi-precision Integers 95

thread T {};

void main( T & th ) { // thread address

for ( i; 10 ) {

sout | nlOff | prng(); sout | prng( 5 ); sout | prng( 0, 5 ) | '\t'; // SLOWER

sout | nlOff | prng( th ); sout | prng( th, 5 ); sout | prng( th, 0, 5 ) | nlOn; // FASTER

}

}

int main() {

set_seed( 1009 );

thread$ & th = *active_thread(); // program-main thread-address

for ( i; 10 ) {

sout | nlOff | prng(); sout | prng( 5 ); sout | prng( 0, 5 ) | '\t'; // SLOWER

sout | nlOff | prng( th ); sout | prng( th, 5 ); sout | prng( th, 0, 5 ) | nlOn; // FASTER

}

sout | nl;

T t; // run thread

}

37301721 2 2

290112364 3 2

733221210 1 3

123981445 2 3

283934808 1 0

1414344101 1 3

871831898 3 4

2142057611 4 4

802117363 0 4

2346353643 1 3

1681308562 1 3

1852700364 4 3

1775396023 2 3

2062557687 2 0

672325890 1 3

873424536 3 4

866783532 0 1

17310256 2 5

492964499 0 0

2143013105 3 2

// same output as above from thread t

Figure 17: Concurrent PRNG

J Multi-precision Integers1

C

A

has an interface to the GMP multi-precision signed-integers [17], similar to the C++ interface provided by GMP. The2

C

A

interface wraps GMP routines into operator routines to make programming with multi-precision integers identical3

to using fixed-sized integers. The C

A

type name for multi-precision signed-integers is Int and the header file is gmp.4

void ?{}( Int * this ); // constructor/destructor5

void ?{}( Int * this, Int init );6

void ?{}( Int * this, zero_t );7

void ?{}( Int * this, one_t );8

void ?{}( Int * this, signed long int init );9

void ?{}( Int * this, unsigned long int init );10

void ?{}( Int * this, const char * val );11

void ∧?{}( Int * this );12

13

Int ?=?( Int * lhs, Int rhs ); // assignment14

Int ?=?( Int * lhs, long int rhs );15

Int ?=?( Int * lhs, unsigned long int rhs );16

Int ?=?( Int * lhs, const char * rhs );17

18

char ?=?( char * lhs, Int rhs );19

short int ?=?( short int * lhs, Int rhs );20

int ?=?( int * lhs, Int rhs );21

long int ?=?( long int * lhs, Int rhs );22

unsigned char ?=?( unsigned char * lhs, Int rhs );23

unsigned short int ?=?( unsigned short int * lhs, Int rhs );24

unsigned int ?=?( unsigned int * lhs, Int rhs );25



96 J Multi-precision Integers

unsigned long int ?=?( unsigned long int * lhs, Int rhs );1

2

long int narrow( Int val );3

unsigned long int narrow( Int val );4

5

int ?==?( Int oper1, Int oper2 ); // comparison6

int ?==?( Int oper1, long int oper2 );7

int ?==?( long int oper2, Int oper1 );8

int ?==?( Int oper1, unsigned long int oper2 );9

int ?==?( unsigned long int oper2, Int oper1 );10

11

int ?!=?( Int oper1, Int oper2 );12

int ?!=?( Int oper1, long int oper2 );13

int ?!=?( long int oper1, Int oper2 );14

int ?!=?( Int oper1, unsigned long int oper2 );15

int ?!=?( unsigned long int oper1, Int oper2 );16

17

int ?<?( Int oper1, Int oper2 );18

int ?<?( Int oper1, long int oper2 );19

int ?<?( long int oper2, Int oper1 );20

int ?<?( Int oper1, unsigned long int oper2 );21

int ?<?( unsigned long int oper2, Int oper1 );22

23

int ?<=?( Int oper1, Int oper2 );24

int ?<=?( Int oper1, long int oper2 );25

int ?<=?( long int oper2, Int oper1 );26

int ?<=?( Int oper1, unsigned long int oper2 );27

int ?<=?( unsigned long int oper2, Int oper1 );28

29

int ?>?( Int oper1, Int oper2 );30

int ?>?( Int oper1, long int oper2 );31

int ?>?( long int oper1, Int oper2 );32

int ?>?( Int oper1, unsigned long int oper2 );33

int ?>?( unsigned long int oper1, Int oper2 );34

35

int ?>=?( Int oper1, Int oper2 );36

int ?>=?( Int oper1, long int oper2 );37

int ?>=?( long int oper1, Int oper2 );38

int ?>=?( Int oper1, unsigned long int oper2 );39

int ?>=?( unsigned long int oper1, Int oper2 );40

41

Int +?( Int oper ); // arithmetic42

Int -?( Int oper );43

Int ∼?( Int oper );44

45

Int ?&?( Int oper1, Int oper2 );46

Int ?&?( Int oper1, long int oper2 );47

Int ?&?( long int oper1, Int oper2 );48

Int ?&?( Int oper1, unsigned long int oper2 );49

Int ?&?( unsigned long int oper1, Int oper2 );50

Int ?&=?( Int * lhs, Int rhs );51

52

Int ?|?( Int oper1, Int oper2 );53

Int ?|?( Int oper1, long int oper2 );54

Int ?|?( long int oper1, Int oper2 );55

Int ?|?( Int oper1, unsigned long int oper2 );56

Int ?|?( unsigned long int oper1, Int oper2 );57

Int ?|=?( Int * lhs, Int rhs );58

59

Int ?∧?( Int oper1, Int oper2 );60



J Multi-precision Integers 97

Int ?∧?( Int oper1, long int oper2 );1

Int ?∧?( long int oper1, Int oper2 );2

Int ?∧?( Int oper1, unsigned long int oper2 );3

Int ?∧?( unsigned long int oper1, Int oper2 );4

Int ?∧=?( Int * lhs, Int rhs );5

6

Int ?+?( Int addend1, Int addend2 );7

Int ?+?( Int addend1, long int addend2 );8

Int ?+?( long int addend2, Int addend1 );9

Int ?+?( Int addend1, unsigned long int addend2 );10

Int ?+?( unsigned long int addend2, Int addend1 );11

Int ?+=?( Int * lhs, Int rhs );12

Int ?+=?( Int * lhs, long int rhs );13

Int ?+=?( Int * lhs, unsigned long int rhs );14

Int ++?( Int * lhs );15

Int ?++( Int * lhs );16

17

Int ?-?( Int minuend, Int subtrahend );18

Int ?-?( Int minuend, long int subtrahend );19

Int ?-?( long int minuend, Int subtrahend );20

Int ?-?( Int minuend, unsigned long int subtrahend );21

Int ?-?( unsigned long int minuend, Int subtrahend );22

Int ?-=?( Int * lhs, Int rhs );23

Int ?-=?( Int * lhs, long int rhs );24

Int ?-=?( Int * lhs, unsigned long int rhs );25

Int --?( Int * lhs );26

Int ?--( Int * lhs );27

28

Int ?*?( Int multiplicator, Int multiplicand );29

Int ?*?( Int multiplicator, long int multiplicand );30

Int ?*?( long int multiplicand, Int multiplicator );31

Int ?*?( Int multiplicator, unsigned long int multiplicand );32

Int ?*?( unsigned long int multiplicand, Int multiplicator );33

Int ?*=?( Int * lhs, Int rhs );34

Int ?*=?( Int * lhs, long int rhs );35

Int ?*=?( Int * lhs, unsigned long int rhs );36

37

Int ?/?( Int dividend, Int divisor );38

Int ?/?( Int dividend, unsigned long int divisor );39

Int ?/?( unsigned long int dividend, Int divisor );40

Int ?/?( Int dividend, long int divisor );41

Int ?/?( long int dividend, Int divisor );42

Int ?/=?( Int * lhs, Int rhs );43

Int ?/=?( Int * lhs, long int rhs );44

Int ?/=?( Int * lhs, unsigned long int rhs );45

46

[ Int, Int ] div( Int dividend, Int divisor );47

[ Int, Int ] div( Int dividend, unsigned long int divisor );48

49

Int ?%?( Int dividend, Int divisor );50

Int ?%?( Int dividend, unsigned long int divisor );51

Int ?%?( unsigned long int dividend, Int divisor );52

Int ?%?( Int dividend, long int divisor );53

Int ?%?( long int dividend, Int divisor );54

Int ?%=?( Int * lhs, Int rhs );55

Int ?%=?( Int * lhs, long int rhs );56

Int ?%=?( Int * lhs, unsigned long int rhs );57

58

Int ?<<?( Int shiften, mp_bitcnt_t shift );59

Int ?<<=?( Int * lhs, mp_bitcnt_t shift );60



98 K Rational Numbers

Int ?>>?( Int shiften, mp_bitcnt_t shift );1

Int ?>>=?( Int * lhs, mp_bitcnt_t shift );2

3

Int abs( Int oper ); // number functions4

Int fact( unsigned long int N );5

Int gcd( Int oper1, Int oper2 );6

Int pow( Int base, unsigned long int exponent );7

Int pow( unsigned long int base, unsigned long int exponent );8

void srandom( gmp_randstate_t state );9

Int random( gmp_randstate_t state, mp_bitcnt_t n );10

Int random( gmp_randstate_t state, Int n );11

Int random( gmp_randstate_t state, mp_size_t max_size );12

int sgn( Int oper );13

Int sqrt( Int oper );14

15

forall( istype & | istream( istype ) ) istype * ?|?( istype * is, Int * mp ); // I/O16

forall( ostype & | ostream( ostype ) ) ostype * ?|?( ostype * os, Int mp );17

Figure 18 shows C

A

and C factorial programs using the GMP interfaces. (Compile with flag -lgmp to link with the18

GMP library.)19

K Rational Numbers20

Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number) and the denomi-21

nator (bottom number) are whole numbers. When creating and computing with rational numbers, results are constantly22

reduced to keep the numerator and denominator as small as possible.23

// implementation24

struct Rational {25

long int numerator, denominator; // invariant: denominator > 026

}; // Rational27

28

Rational rational(); // constructors29

Rational rational( long int n );30

Rational rational( long int n, long int d );31

void ?{}( Rational * r, zero_t );32

void ?{}( Rational * r, one_t );33

34

long int numerator( Rational r ); // numerator/denominator getter/setter35

long int numerator( Rational r, long int n );36

long int denominator( Rational r );37

long int denominator( Rational r, long int d );38

39

int ?==?( Rational l, Rational r ); // comparison40

int ?!=?( Rational l, Rational r );41

int ?<?( Rational l, Rational r );42

int ?<=?( Rational l, Rational r );43

int ?>?( Rational l, Rational r );44

int ?>=?( Rational l, Rational r );45

46

Rational -?( Rational r ); // arithmetic47

Rational ?+?( Rational l, Rational r );48

Rational ?-?( Rational l, Rational r );49

Rational ?*?( Rational l, Rational r );50

Rational ?/?( Rational l, Rational r );51

52

double widen( Rational r ); // conversion53

Rational narrow( double f, long int md );54

55

forall( istype & | istream( istype ) ) istype * ?|?( istype *, Rational * ); // I/O56

forall( ostype & | ostream( ostype ) ) ostype * ?|?( ostype *, Rational );57



K Rational Numbers 99

C

A

C

#include <gmp.hfa>

int main( void ) {

sout | "Factorial Numbers";

Int fact = 1;

sout | 0 | fact;

for ( i; 40 ) {

fact *= i;

sout | i | fact;

}

}

#include <gmp.h>

int main( void ) {

gmp_printf( "Factorial Numbers\n" );

mpz_t fact;

mpz_init_set_ui( fact, 1 );

gmp_printf( "%d %Zd\n", 0, fact );

for ( unsigned int i = 1; i <= 40; i += 1 ) {

mpz_mul_ui( fact, fact, i );

gmp_printf( "%d %Zd\n", i, fact );

}

}

Factorial Numbers

0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

11 39916800

12 479001600

13 6227020800

14 87178291200

15 1307674368000

16 20922789888000

17 355687428096000

18 6402373705728000

19 121645100408832000

20 2432902008176640000

21 51090942171709440000

22 1124000727777607680000

23 25852016738884976640000

24 620448401733239439360000

25 15511210043330985984000000

26 403291461126605635584000000

27 10888869450418352160768000000

28 304888344611713860501504000000

29 8841761993739701954543616000000

30 265252859812191058636308480000000

31 8222838654177922817725562880000000

32 263130836933693530167218012160000000

33 8683317618811886495518194401280000000

34 295232799039604140847618609643520000000

35 10333147966386144929666651337523200000000

36 371993326789901217467999448150835200000000

37 13763753091226345046315979581580902400000000

38 523022617466601111760007224100074291200000000

39 20397882081197443358640281739902897356800000000

40 815915283247897734345611269596115894272000000000

Figure 18: Multi-precision Factorials



100 REFERENCES

References1

[1] Ada16. Ada Reference Manual ISO/IEC 8652:2012(E) with COR.1:2016. AXE Consultants, Madison WI, USA,2

3rd with technical corrigendum 1 for ada 2012 edition, 2016. https://docs.adacore.com/live/wave/arm12/pdf/arm12/3

arm-12.pdf. 24

[2] Richard C. Bilson. Implementing overloading and polymorphism in C∀. Master’s thesis, School of Com-5

puter Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, 2003. http://plg.uwaterloo.ca/theses/6

BilsonThesis.pdf. 2, 497

[3] Walter Bright and Andrei Alexandrescu. D Programming Language. Digital Mars, Vienna Virginia, U.S.A.,8

2016. http://dlang.org/spec/spec.html. 29

[4] P. A. Buhr. A case for teaching multi-exit loops to beginning programmers. SIGPLAN Not., 20(11):14–22,10

November 1985. 1211

[5] P. A. Buhr, David Till, and C. R. Zarnke. Assignment as the sole means of updating objects. Softw. Pract. Exper.,12

24(9):835–870, September 1994. 2, 4213

[6] Cobol14. Programming Languages – Cobol ISO/IEC 1989:2014. International Standard Organization, Geneva,14

Switzerland, 2nd edition, 2014. https://www.iso.org/standard/51416.html. 215

[7] G. V. Cormack and A. K. Wright. Polymorphism in the compiled language ForceOne. In Proceedings of the16

20th Hawaii International Conference on Systems Sciences, pages 284–292, January 1987. 217

[8] G. V. Cormack and A. K. Wright. Type-dependent parameter inference. SIGPLAN Not., 25(6):127–136, June18

1990. Proceedings of the ACM Sigplan’90 Conference on Programming Language Design and Implementation19

June 20-22, 1990, White Plains, New York, U.S.A. 2, 3720

[9] Glen Jeffrey Ditchfield. Contextual Polymorphism. PhD thesis, Department of Computer Science, University of21

Waterloo, Waterloo, Ontario, Canada, N2L 3G1, 1992. http://plg.uwaterloo.ca/theses/DitchfieldThesis.pdf. 222

[10] Tom Duff. Duff’s device. http://www.lysator.liu.se/c/duffs-device.html, November 1983. 8, 923

[11] Dominic Duggan, Gordon V. Cormack, and John Ophel. Kinded type inference for parametric overloading. Acta24

Infomatica, 33(1):21–68, 1996. 225

[12] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley, Boston, 1st26

edition, 1990. 227

[13] Rodolfo Gabriel Esteves. C∀, a study in evolutionary design in programming languages. Master’s thesis, School28

of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, 2004. http://plg.uwaterloo.29

ca/theses/EstevesThesis.pdf. 230

[14] Fortran08. Programming Languages – Fortran Part 1:Base Language ISO/IEC 1539-1:2010. International31

Standard Organization, Geneva, Switzerland, 3rd edition, 2010. https://www.iso.org/standard/50459.html. 232

[15] Nissim Francez. Another advantage of keyword notation for parameter communication with subprograms. Com-33

munications of the ACM, 20(8):604–605, August 1977. 3634

[16] John Galletly. OCCAM 2: Including OCCAM 2.1. UCL (University College London) Press, London, 2nd edition,35

1996. 33, 5136

[17] GNU Multiple Precision Arithmetic Library. GNU, 2016. https://gmplib.org. 9537

[18] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. Java Language Specification, Java SE 838

edition, 2015. 239

[19] Robert Griesemer, Rob Pike, and Ken Thompson. Go Programming Language. Google, Mountain View, CA,40

USA, 2009. https://go.dev/ref/spec. 2, 7141

[20] W. T. Hardgrave. Positional versus keyword parameter communication in programming languages. SIGPLAN42

Not., 11(5):52–58, May 1976. 3643

[21] International Standard Organization, Geneva, Switzerland. C Programming Language ISO/IEC 9889:2011-12,44

3rd edition, December 2011. https://www.iso.org/standard/57853.html. 2, 20, 22, 47, 74, 7645

https://docs.adacore.com/live/wave/arm12/pdf/arm12/arm-12.pdf
https://docs.adacore.com/live/wave/arm12/pdf/arm12/arm-12.pdf
http://plg.uwaterloo.ca/theses/BilsonThesis.pdf
http://plg.uwaterloo.ca/theses/BilsonThesis.pdf
http://dlang.org/spec/spec.html
https://www.iso.org/standard/51416.html
http://plg.uwaterloo.ca/theses/DitchfieldThesis.pdf
http://www.lysator.liu.se/c/duffs-device.html
http://plg.uwaterloo.ca/theses/EstevesThesis.pdf
http://plg.uwaterloo.ca/theses/EstevesThesis.pdf
https://www.iso.org/standard/50459.html
https://gmplib.org
https://go.dev/ref/spec
https://www.iso.org/standard/57853.html


REFERENCES 101

[22] International Standard Organization, Geneva, Switzerland. C++ Programming Language ISO/IEC 14882:2014,1

4th edition, 2014. https://www.iso.org/standard/64029.html. 2, 732

[23] Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report, ISO Pascal Standard. Springer–Verlag,3

4th edition, 1991. Revised by Andrew B. Mickel and James F. Miner. 164

[24] C. H. Lindsey and S. G. van der Meulen. Informal Introduction to ALGOL 68. North-Holland, London, 1977.5

216

[25] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert Scheifler, and Alan Sny-7

der. CLU Reference Manual, volume 114 of Lecture Notes in Computer Science. Springer, New York, 1981. 33,8

519

[26] Python. Python Language Reference, Release 3.7.2. Python Software Foundation, https://docs.python.org/3/10

reference/index.html, 2018. 111

[27] Dennis M. Ritchie. The development of the C language. SIGPLAN Not., 28(3):201–208, March 1993. 1912

[28] Rust Programming Language. Rust Project Developers, 2015. https://doc.rust-lang.org/reference.html. 213

[29] Scala Language Specification, Version 2.11. École Polytechnique Fédérale de Lausanne, 2016. http://www.14

scala-lang.org/files/archive/spec/2.11. 115

[30] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Series in Computer Science. Addison-16

Wesley, Boston, 1st edition, 1986. 117

[31] David W. Till. Tuples in imperative programming languages. Master’s thesis, Department of Computer Science,18

University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, 1989. 2, 42, 43, 4519

[32] TIOBE Index. https://www.tiobe.com/tiobe-index. 120

[33] Ben Werther and Damian Conway. A modest proposal: C++ resyntaxed. SIGPLAN Not., 31(11):74–82, Novem-21

ber 1996. 222

https://www.iso.org/standard/64029.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/reference/index.html
https://doc.rust-lang.org/reference.html
http://www.scala-lang.org/files/archive/spec/2.11
http://www.scala-lang.org/files/archive/spec/2.11
https://www.tiobe.com/tiobe-index


Index

Italic page numbers give the location of the main entry for1

the referenced term. Plain page numbers denote uses of2

the indexed term. Entries for grammar non-terminals are3

italicized. A typewriter font is used for grammar terminals4

and program identifiers.5

!?, 686

&&, 77

*, 278

*=, 279

*?, 6810

+, 2711

++?, 6812

+=, 11, 2713

+?, 6814

--?, 6815

--colors, 416

--deterministic-out, 417

--gdb, 418

--help, 419

--invariant, 420

--libcfa, 421

--linemarks, 422

--no-linemarks, 423

--no-main, 424

--no-prelude, 425

--prelude-dir, 526

--print, 427

--prototypes, 428

--statistics, 529

--tree, 530

-=, 1131

-?, 6832

-CFA, 333

-L, 434

-N, 435

-P, 436

-S, 537

-XCFA, 3, 438

-,̃ 1139

-=̃, 1140

-c, 441

-d, 442

-debug, 343

-g, 444

-h, 445

-help, 346

-i, 447

-l, 448

-lgmp, 9849

-m, 450

-n, 451

-nodebug, 352

-nohelp, 453

-noquiet, 454

-p, 455

-quiet, 456

-std=gnu11, 357

-t, 558

-∼ , 1259

-∼=, 1260

?!=?, 6861

?%=?, 6862

?%?, 6863

?&=?, 6864

?&?, 6865

?(), 6866

?*=?, 6867

?*?, 6868

?++, 6869

?+=?, 6870

?+?, 6871

?--, 6872

?-=?, 6873

?-?, 6874

?/=?, 6875

?/?, 6876

?<<=?, 6877

?<<?, 6878

?<=?, 6879

?<?, 6880

?==?, 6881

?=?, 6882

?>=?, 6883

?>>=?, 6884

?>>?, 6885

?>?, 6886

?[?], 6887

?\=?, 6888

?\?, 6889

?∧=?, 6890

?∧?, 6891

?|=?, 6892

?|?, 6893

,̃ 1194

=̃, 1195

_ _CFA_MAJOR_ _, 496

_ _CFA_MINOR_ _ , 497

_ _CFA_PATCH_ _ , 498

_ _CFA_ _ , 499

_ _CFORALL_ _ , 4100

_ _cforall, 4101

∼ , 12102

102



INDEX 103

∼=, 121

∼?, 682

aalloc, 78, 803

abs, 824

acos, 865

acosh, 876

Ada, 2, 6, 387

address, 208

duality, 219

address duality, 2310

addressing errors, 2211

adelete, 8112

aggregate, 1513

aggregation, 40, 4114

Algol68, 2115

aliasing, 4016

align, 8117

aligned_alloc, 8018

alloc, 78, 8119

amemalign, 8020

anew, 8121

array, 2322

reference, 2323

ascending exclusive range, 1124

ascending inclusive range, 1125

ASCII, 5526

extended, 5527

ascodegen, 428

asin, 8629

asinh, 8630

assert.h, 7631

assignment, 2332

cascade, 5233

pointer, 2134

ast, 435

asterr, 436

atan, 8637

atan2, 8638

atanh, 8739

ato, 8140

backward-compatible, 341

basetypeof, 7642

bbox, 543

bcodegen, 544

Bilson, Richard, 245

bin, 5846

bit field, 1947

brand, 6948

break, 7, 1249

break50

labelled, 1251

bresolver, 452

bsearch, 8253

bsearchl, 8254

bsearchu, 8255

C linkage, 356

C++, 1–3, 23, 38, 70, 75, 7657

C-for-all, 158

C11, 259

calling convention, 260

calloc, 8061

cancellation62

pointer/reference, 2263

cascade assignment, 5264

case, 7, 1065

catch, 7666

catchResume, 7667

cbrt, 8568

ceil, 8869

cfa, 3, 470

C

A

, 171

char *, 2572

choose, 9, 10, 7673

clamp, 8374

clear, 54, 5575

close, 54, 5576

closing coercion, 5077

cmemalign, 8078

Cobol, 279

coercion, 22, 4580

comma expression, 4081

compilation82

cfa, 383

compilation option84

-CFA, 385

-XCFA, 386

-debug, 387

-help, 388

-nodebug, 389

-nohelp, 490

-noquiet, 491

-quiet, 492

-std=gnu11, 393

compiler, 394

complex, 695

complex constant, 696

complex.h, 7697

const hell, 2498

constant99

underscore, 5100

continue, 12101

continue102

labelled, 12103

conversion, 45104

copysign, 89105



104 INDEX

coroutine, 761

coroutines, 692

cos, 853

cosh, 864

ctordtor, 55

ctype.h, 766

D, 2, 70, 737

dangling else, 158

dangling pointer, 779

Dave Till, 210

deadlock, 62, 6311

declstats, 412

default, 1013

default parameter, 3614

delete, 8115

descending exclusive range, 1116

descending inclusive range, 1117

describe not prescribe, 118

disable, 7619

Ditchfield, Glen, 220

div, 4021

do, 6, 11, 12, 1522

Doug Lea, 3323

duality, 2124

Duff’s device, 8–1025

duplicate free, 7726

dynamic storage-management, 7727

enable, 7628

eng, 5829

enum, 3130

enumeration, 3131

enumeration constant, 3132

eof, 54, 5533

equality operator, 2734

erf, 8735

erfc, 8736

errno.h, 7637

Esteves, Rodolfo, 238

exception, 7639

excl, 6140

excpdecl, 441

exp, 8442

exp2, 8443

expm1, 8444

exponentiation45

floating, 646

logarithm, 647

operator, 648

unsigned integral, 649

expralt, 450

expranly, 551

extended else, 1552

eye candy, 1553

fail, 54, 5554

fallthrough, 9, 10, 7655

fdim, 8456

fenv.h, 7657

Fibonacci, 6958

fill, 8159

finally, 7660

fixup, 7661

flattening coercion, 5162

float.h, 7663

floor, 8864

flush, 54, 5565

fma, 8466

fmod, 8367

for, 6, 11, 12, 1568

for control, 1169

forall, 7670

Fortran, 271

frexp, 8972

fstream.hfa, 1, 4, 5273

garbage-collection, 174

regional, 175

gcc, 3, 4, 6976

generator, 7677

getline, 6178

getpid, 9379

Glen Ditchfield, 280

gmp, 95, 9981

gmp.h, 76, 9982

gnu, 383

Go, 2, 69–7184

goto, 1285

goto86

restricted, 1287

hex, 5888

hypot, 8589

I/O90

common case, 5291

separator, 5492

if, 6, 12, 1593

ifstream94

?{}, 5595

∧?{}, 5596

clear, 5597

close, 5598

eof, 5599

fail, 55100

open, 55101

read, 55102

unget, 55103



INDEX 105

ignore, 621

ilogb, 852

immutable, 213

implicit output separation, 564

implicit referencing, 235

implicit separator, 546

incl, 617

inheritance8

enumeration, 329

initialization, 2310

input, 5211

instgen, 512

instruction decoding, 2113

Int, 9514

int128, 7615

interoperability, 216

interposition, 517

inttypes.h, 7618

iostream, 119

isacquire, 6220

iso646.h, 7621

istream22

isacquire, 6223

Java, 2, 6, 23, 38, 7324

K-W C, 225

keyword, 7626

labelled27

break, 1228

continue, 1229

lambda, 3930

ldexp, 8931

Lea, Doug, 3332

left, 6033

level number, 434

lexical list, 4935

lgamma, 8736

library37

stream, 5238

library support, 339

limits.h, 7640

locale, 6341

stream, 6342

locale.h, 7643

log, 8444

log10, 8545

log1p, 8546

log2, 8447

logarithm, 648

logb, 8549

loop control, 1150

loop index, 1151

lrint, 8852

lround, 8953

lvalue, 22, 24, 25, 5154

malloc, 78, 8055

malloc.h, 7656

malloc_alignment, 8057

malloc_expansion, 8058

malloc_mmap_start, 8059

malloc_size, 8060

malloc_stats_clear, 8061

malloc_stats_fd, 8062

malloc_unfreed(), 8063

malloc_zero_fill, 8064

mangling65

name, 3, 7666

manipulator, 56, 58, 6067

bin, 5868

eng, 5869

excl, 6170

getline, 6171

hex, 5872

ignore, 6273

incl, 6174

left, 6075

nl, 57, 5876

nlOff, 57, 5877

nlOn, 57, 5878

nobase, 5979

nodp, 5980

nosep, 5781

oct, 5882

pad0, 6083

quote, 6184

sci, 5885

sep, 5786

sepGet, 5687

sepGetTuple, 5788

sepOff, 5789

sepOn, 5790

sepSet, 5691

sepSetTuple, 5792

sepTupleVal, 5793

sepVal, 5694

sign, 5995

skip, 6096

unit, 5897

upcase, 5998

wd, 5999

wdi, 60, 61100

ws, 59101

manipulators, 57102

mass, 43103

math.h, 76104

max, 83105



106 INDEX

memalign, 801

memcpy, 812

memory fault, 203

memory leak, 774

memset, 815

Michael Tiemann, 336

min, 837

modf, 40, 898

monitor, 769

multi-level exit, 1210

multi-precision, 9511

multiple assignment, 5112

multiple, 4313

multiple derivation, 1914

mutex, 7615

name clash, 316

name hiding, 3817

name mangling, 318

named parameter, 3619

named return values, 3420

naming, 4021

nan, 8422

nearbyint, 8823

nested control-structure, 1224

nested locking, 6325

new, 8126

newline separation, 5727

nextafter, 8928

nexttoward, 8929

nl, 57, 5830

nlOff, 57, 5831

nlOn, 57, 5832

nobase, 5933

nodp, 5934

nosep, 5735

null-pointer constant, 2036

object, 2037

object-oriented, 138

oct, 5839

ofstream40

?{}, 5541

∧?{}, 5542

clear, 5543

close, 5544

fail, 5545

flush, 5546

open, 5547

write, 5548

one_t, 7649

onion, 1950

open, 54, 5551

opening coercion, 5052

operator53

exponentiation, 654

or, 7655

ostream56

mutex, 6257

osacquire, 6258

out parameter, 4059

output, 5260

overload, 2, 361

pad0, 6062

parameter63

default, 3664

named, 3665

parametric-polymorphic, 266

parse, 467

particle and wave, 2468

plan-9, 3269

pointer, 19, 2170

assignment, 2171

cancellation, 2272

pointer type, 2073

posix_memalign, 8074

postfix function, 3575

pow, 8476

pow( x, y ), 677

power of a name, 378

prelude, 379

preprocessor, 3180

preprocessor variables81

_ _CFA_MINOR_ _ , 482

_ _CFA_PATCH_ _ , 483

_ _CFA_ _ , 484

_ _CFA_ _ , 485

_ _CFORALL_ _ , 486

_ _cforall, 487

prescribing, 2088

pretty, 489

prng, 9390

productivity, 1, 1991

pseudo random-number generators, 9392

pvalloc, 8093

Python, 1, 53, 7394

qsort, 8295

quasi-keyword, 7696

quote, 6197

raii, 6298

random, 8399

Rational, 98100

read, 54, 55101

realloc, 80, 81102

reallocarray, 80103

recursive lock, 62104



INDEX 107

reference, 211

reference type, 20, 222

referenced type, 203

regional garbage-collection, 14

relational operator, 275

remainder, 836

remquo, 837

report, 768

resize, 80, 819

return list, 3310

Richard Bilson, 211

rint, 8812

Rodolfo Esteves, 213

round, 8814

routine object, 2415

rproto, 416

rsteps, 417

Rust, 2, 70, 7218

rvalue, 22, 2419

safety, 1, 1920

scala, 121

scalbln, 8922

scalbn, 8923

scanset, 6024

sci, 5825

seed, 9326

sentinel value, 2027

sep, 5728

sepGet, 5629

sepGetTuple, 5730

sepOff, 5731

sepOn, 5732

sepSet, 5633

sepSetTuple, 5734

sepTupleVal, 5735

sepVal, 5636

setjmp.h, 7637

shell pipe-operator, 5338

sign, 5939

signal.h, 7640

sin, 8541

sinh, 8642

skip, 6043

sound, 2044

sout, 145

sqrt, 8546

srandom, 8347

standard library, 7648

static multi-level exit, 1249

stdalign.h, 7650

stdarg.h, 7651

stdatomic.h, 7652

stdbool.h, 7653

stddef.h, 7654

stdint.h, 7655

stdio.h, 1, 4, 7656

stdlib.h, 7657

stdlib.hfa, 9358

stdnoreturn.h, 7659

sticky properties, 7760

storage management, 7761

stream62

locale, 6363

stream library, 5264

string, 2565

string.h, 7666

string.hfa, 2667

structuring coercion, 5168

suspend, 7669

swap, 8370

switch, 7, 10, 1271

symevt, 472

tan, 8573

tanh, 8674

tentative definitions, 7475

tgamma, 8776

tgmath.h, 7677

threads.h, 7678

throw, 7679

throwResume, 7680

Tiemann, Michael, 3381

Till, Dave, 282

time.h, 7683

timeout, 7684

trait, 7685

transpiler, 3, 486

transpiler option87

--colors, 488

--deterministic-out, 489

--gdb, 490

--help, 491

--invariant, 492

--libcfa, 493

--linemarks, 494

--no-linemarks, 495

--no-main, 496

--no-prelude, 497

--print, 498

-print99

ascodegen, 4100

asterr, 4101

ast, 4102

bbox, 5103

bcodegen, 5104

bresolver, 4105

ctordtor, 5106



108 INDEX

declstats, 41

excpdecl, 42

expralt, 43

expranly, 54

instgen, 55

parse, 46

pretty, 47

rproto, 48

rsteps, 49

symevt, 410

tuple, 511

valdecl, 412

--prototypes, 413

--statistics14

counters,heap,time,all,none, 515

--tree, 516

-L, 417

-N, 418

-P, 419

ascodegen, 420

asterr, 421

ast, 422

bbox, 523

bcodegen, 524

bresolver, 425

ctordtor, 526

declstats, 427

excpdecl, 428

expralt, 429

expranly, 530

instgen, 531

parse, 432

pretty, 433

rproto, 434

rsteps, 435

symevt, 436

tuple, 537

valdecl, 438

-S39

counters,heap,time,all,none, 540

-XCFA, 441

-c, 442

-d, 443

-g, 444

-h, 445

-i, 446

-l, 447

-m, 448

-n, 449

-p, 450

-t, 551

trunc, 8852

try, 7653

tuple, 35, 40, 5354

tuple, 555

tuple assignment, 4356

tuple expression, 4157

tuple type, 41, 4958

tuple variable, 4159

tuple-returning functions, 4160

type hoisting, 3861

type nesting, 3862

uchar.h, 7663

undefined, 20, 3464

underscore, 565

unget, 5566

ungetc, 5467

unistd.h, 7668

unit, 5869

unsound, 2070

upcase, 5971

valdecl, 472

valloc, 8073

version number, 474

virtual, 7675

waitfor, 15, 7676

warning, 2577

wchar.h, 7678

wctype.h, 7679

wd, 5980

wdi, 60, 6181

What goes around, comes around., 282

when, 7683

while, 6, 11, 12, 1584

with, 7685

write, 54, 55, 6386

ws, 5987

zero_t, 7688


	Contents
	Introduction
	Background


	Why fix C?
	History
	Interoperability
	C180A Compilation
	Backquote Identifiers
	Constant Underscores
	Exponentiation Operator
	Control Structures
	if / while Statement
	case Clause
	switch Statement
	Non-terminating and Labelled Non-terminating and Labelled fallthrough
	Loop Control
	Labelled continue / break Statement
	Extended else
	with Statement

	Exception Handling
	Non-local Exception
	Exception Hierarchy

	Alternative Declarations
	Pointer / Reference
	Initialization
	Address-of Semantics
	Conversions

	string Type
	Implicit String Conversions
	Size (length)
	Comparison Operators
	Concatenation
	Repetition
	Substring
	Searching
	Miscellaneous
	Returning N+1 on Failure
	C Compatibility
	Input/Output Operators

	Enumeration
	Enum type
	Inheritance

	Routine Definition
	Named Return Values
	Routine Prototype
	Postfix Function

	Routine Pointers
	Default and Named Parameter
	Default
	Named (or Keyword)
	Mixed Default/Named

	Unnamed Structure Fields
	Nesting
	Type Nesting
	Routine Nesting

	Tuple
	Multiple-Return-Value Functions
	Expressions
	Variables
	Indexing
	Flattening and Structuring
	Assignment
	Construction
	Member-Access Expression
	Casting
	Polymorphism
	Assertion Inference


	Tuples
	Tuple Coercions
	Mass Assignment
	Multiple Assignment
	Cascade Assignment

	Stream I/O Library
	Basic I/O
	Stream Output
	Stream Input
	Stream Files

	Implicit Separator
	Separation Manipulators
	Newline Manipulators
	Output Manipulators
	Input Manipulators
	Concurrent Stream Access
	Locale

	String Stream
	Structures
	Constructors and Destructors
	Overloading
	Constant
	Variable
	Function Overloading
	Operator

	Auto Type-Inferencing
	Concurrency
	Coroutine
	Monitors
	Threads

	Language Comparisons
	C++
	Go
	Rust
	D

	Syntax Ambiguities
	C Incompatibles
	Cforall Keywords
	Standard Headers
	Standard Library
	Dynamic Storage-Management
	C Interface
	C180A Interface

	Memory Set and Copy
	String to Value Conversion
	Search / Sort
	Absolute Value
	C Random Numbers
	Algorithms

	Math Library
	General
	Exponential
	Logarithm
	Trigonometric
	Hyperbolic
	Error / Gamma
	Nearest Integer
	Manipulation

	Time Keeping
	Duration
	timeval
	timespec
	itimerval
	Time

	Clock
	C time
	Clock

	Pseudo Random Number Generator
	Multi-precision Integers
	Rational Numbers
	Index

